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Abstract 

A new approach to the quantization of constrained or otherwise reduced classical mechanical 
systems is proposed. On the classical side, the generalized symplectic reduction procedure of 
Mikami and Weinstein, as further extended by Xu in connection with symplectic equivalence 
bimodules and Morita equivalence of Poisson manifolds, is rewritten so as to avoid the use of 
symplectic groupoids, whose quantum analogue is unknown. A theorem on symplectic reduction 
in stages is given. This allows one to discern that the 'quantization' of the generalized moment 
map consists of an operator-valued inner product on a (pre-)Hilbert space (that is, a structure 
similar to a Hilbert C*-module). Hence Rieffel's far-reaching operator-algebraic generalization 
of the notion of an induced representation is seen to be the exact quantum counterpart of the 
classical idea of symplectic reduction, with imprimitivity bimodules and strong Morita equivalence 
of C*-algebras falling in the right place. 

Various examples involving groups as well as groupoids are given, and known difficulties with 
both Dirac and BRST quantization are seen to be absent in our approach. 
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1. Introduction 

Marsden-Weinstein reduction [34,36] (alternatively known as Hamiltonian or sym- 

plectic reduction) plays a basic role in classical mechanics [ 1,17,29,31], as well as in 

pure mathematics. The starting point is a connected symplectic manifold S equipped 

I Supported by an S.E.R.C. Advanced Research Fellowship. 

039:3-0440/95/$09.50 (~) 1995 Elsevier Science B.V. All rights reserved 
SSDI 0 3 9 3 - 0 4 4 0 ( 9 4 ) 0 0 0 3 4 - 4  



286 N.P. Landsman~Journal of Geometry and Physics 15 (1995) 285-319 

with a right-action of  a Lie group H (assumed connected for simplicity),  which action 
we assume to be strongly Hamiltonian for the moment.  In that case one has an equiv- 

ariant moment  map J : S ~ ( h * ) - ,  where h is the Lie algebra of  H, and h* its dual 
(that is, J intertwines the co-adjoint action on h* and the action on S); here and in 

what follows the notation P -  stands for a Poisson manifold P,  equipped with minus its 
original Poisson structure. The essential point is that the pull-back J* : C ~ ( ( h * ) - )  
C°° (S )  is a morphism of  Poisson algebras (relative to the Lie-Poisson structure on h* 

[ 17,53,29,37] ). The choice of  a co-adjoint orbit O C h* then leads to the reduced space 
S ° = j - l  ( O ) / H ,  which inherits a symplectic structure from S. I f  A is a Poisson subal- 

gebra of  C ~ (S) whose elements are H-invariant (equivalently, they Poisson-commute 2 

with J * C ° ° ( h * ) ) ,  we obtain a Poisson morphism 17" ° : A ~ C ° ° ( S ° ) .  This may be 

thought of  as a 'classical representation' of  A on S ° ,  which is induced from the Poisson 

morphism (or, once again, 'classical representation')  7to = i~ : C ° ° ( h  *) ~ C ° ° ( O ) ,  

where io  is the inclusion map of  O into h*. For example, one is usually given an 

H-invariant Hamiltonian Ho E C ~ ( S ) ,  whose representative 7r° (Ho) C C ~ ( S  ° )  is 
the reduced Hamiltonian on the reduced phase space. More generally, any symplectic 

realization p : X ---, h* of  the Poisson manifold h* (that is, X is symplectic, and p is 
a Poisson map [8] ) leads to a classical representation ~ X ( A )  on a certain symplectic 

space S x, to be detailed below. 

The connection with constrained mechanical systems ~ la Dirac [9] is as follows: 

one chooses a basis {Ti}i=l,...,dn of  h, and defines f i  E C ~ ( S )  by f i  = J*7"i; here 
T,- E C ~ ( h  *) is defined by ~ ( 0 )  = (0, T~) for 0 E h*. Then pick an arbitrary point 

/z C (.9, pu t / z i  =/~,.(/z) = (/z,T/), and take the constraints on S to be ¢ i i=  f i  - Izi = 

0, i = 1 . . . . .  dr/. These constraints will in general be mixed (that is, of  first as well as 
second class),  and one obtains the reduced phase space by quotienting the constraint 

surface by the foliation defined by the Hamiltonian flows of  the first-class constraints 
[9] .  This reduced phase space of  Dirac is then symplectomorphic to the Marsden-  

Weinstein reduced space S ° mentioned above. The geometric procedure is superior 
to the 'physicis t ' s '  approach just sketched, in that one need not pick a basis of  h, an 
arbitrary point/ . t , 'or  explicitly classify the functions of  constraint ~Pi into first and second 

class ones. 
One would naturally like to generalize this construction to the situation where one has 

a symplectic space S, a Poisson manifold P [29],  and two Poisson maps J : S ~ P -  

and p : X ---* P, where X is symplectic. This should lead to an ' induced classical 
representation' 7r x of  any Poisson subalgebra A C C °° (S) which Poisson-commutes 
with J * C ~ ( P ) ,  on some symplectic space S x. This generalization was partly achieved 
by Mikami and Weinstein [37] in the special case where P is integrable (in the sense 
that it is the base space of  units of  a symplectic groupoid [ 8,37 ] ), and X is a symplectic 
leaf of  P (with p the injection map) ,  and later Xu [56] gave a more general construction 
avoiding the latter restriction. A slight rewriting of  this, finally lifting also the condition 

2 This condition is not strictly necessary, but facilitates the presentation, and is satisfied in generic examples. 
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that P be integrable (and thereby avoiding constructions involving symplectic groupoids, 

whose quantization we do not understand), is given in Section 2 below. 

From the physical point of view of constrained systems, what this generalization 
achieves is that now reduced phase spaces obtained from arbitrary Poisson algebras of 
constraints may be described in a very satisfactory geometric fashion. The physicist's 

approach would be to choose a basis ~ which generates C a ( P )  in some appropriate 
way, and pick a point/~ E X, where X is a symplectic leaf in P. With the fi  (which 
satisfy the Poisson algebra of P -  ) and/zi defined as above, one then easily finds that the 
reduced phase space defined by the constraints tJb i is symplectomorphic to S x. However, 
if X in the preceding paragraph is not taken as a symplectic leaf in P, one obtains a 

symplectic space S x (and an associated representation of the Poisson algebra A) which 

cannot be obtained as a reduced phase space in the traditional sense, in any obvious 
way,, 

Thus one has a very general method of constructing new symplectic spaces and 
Poisson morphisms from old ones at one's disposal, which ought to be quantized in some 

way. While a direct quantization of the reduced symplectic manifolds and concordant 

induced representations of Poisson algebras may be possible in certain examples, a 

systematic approach intending to mimic the classical reduction/induction procedure in 

some quantum fashion ought to start from a quantization of the 'unconstrained' system. 
Hence we assume we have found two commuting operator algebras ,,4 and/3 acting on 

a complex vector space L from the left and from the right, respectively, as well as a 

(left) /3-module 7-(x; from these data we try to construct an 'induced' representation 

rrX (A)  on a Hilbert space 7-/x. We denote these data by ,A ~ L *-- 13 and/3 -~ ~x" The 
operator algebras ,A and/3 are to be seen as (dense subalgebras of) the quantizations of 

the Poisson algebras A and C °° (P ) ,  respectively (barring boundedness considerations). 
Indeed, in all our applications L will be a dense subspace of a Hilbert space ~ ,  which 

in physicists' language plays the role of the state space of the unconstrained system. 
For our purpose it does not matter very much what one exactly means by a quantiza- 

tion; the induction procedure may be applied to any data L, A,/3, ~x ,  ~x .  Ideally, these 
data correspond to a strict deformation quantization [ 45 ] (as redefined in [ 23 ] ) of the 

symplectic data, as in some of our examples in Section 4. 
We now take our cue from three directions (details to be given later on in this paper): 

(i) Take G a locally compact group and H C G a closed subgroup. Let rrx(H) be a 
unitary representation of H on ~ x ;  we may then form the induced representation 
rrX(G) on a specific Hilbert space ~ x ,  as defined in the Mackey theory [30,50]. 

7t~( 
Rieffel [43] relates this to the data C*(G) ~ L2(G) ,-- C*(H) and C*(H) 
~ x ,  where C* (G) is the group algebra of G [40], which acts on L2(G) in the left- 
regular representation, with C* (H)  acting in the right-regular anti-representation 

(restricted to H) .  
In case that G and H are Lie groups, it is argued in [20,17,54] that the classical 

analogue of the Mackey induction procedure is to take S = T'G, A = C a ( g  *) -- 
C°°(T*G) c (the Poisson algebra of smooth functions on T*G which commute 
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with the pull-back to T*G of the right-action of G on itself), and P = h*; the 
moment map J : T*G --* ( h * ) -  comes from the pull-back of the right-action of H 
on G. A co-adjoint orbit (.9 C h* is then analogous to an irreducible unitary repre- 
sentation 7r x, and the Marsden-Weinstein reduced space j-l((9)/H =-- ( T ' G ) o ,  

carrying the induced action 7r ° of C°°(g*),  is the symplectic counterpart of the 
Hilbert space 7-/x carrying the induced representation 7r x of G (or C*(G)) .  In 
our previous notation, this corresponds to the Poisson map p : X = (9 --~ P = h* 
being given by the inclusion map; the general case where X is a Hamiltonian 
H-space and p a moment map is considered in [59] as a classical analogue of 
induction. To complete the parallel, we recall Rieffel's discovery that the group al- 
gebra C*(G) is a deformation quantization of the Poisson algebra C a ( g  *) [46], 

which in specific cases is even strict in the sense of [45]. 
Let (P, Q, H, pr) be a principal fibre bundle with projection pr : P ~ Q and a 
compact Lie group H acting on the total space P from the right. The symplectic 
leaves of the Poisson manifold ( T * P ) / H  are in one-to-one correspondence with 
the co-adjoint orbits (9 in h*, and, as originally discovered by Sternberg, a leaf S ° 

plays the role of the phase space of a particle moving on Q with internal charge 
(9, which couples to a Yang-Mills field with gauge group H [17,52,31]. This is 
evidently described through Marsden-Weinstein reduction by taking S = T*P and 
A = C°°(T*P)/4 ~_ C °° ( ( T * P ) / H ) .  

The quantization of this setting was constructed in [ 23 ] using some Lie groupoid 
and algebroid technology. The results were obtained by applying a generalized 
induction procedure to the quantum data /C(L2(p))  H ~ Lz(P)  +-- C*(H)  

and C*(H)  "~-4 7-tx, thus obtaining irreducible representations of the C*-algebra 
/C (L2(P)  )/4 of H-invariant compact operators on L2(P) on spaces ~ x  analogous 

to the ones used in the Mackey theory. Indeed, the special case P = G reproduces 
the constructions in the previous item. One obtains a sharpened version of a strict 
deformation quantization even in the general case. A simple special case of this 
construction appeared in [22]. 

It was recognized by Xu [57] that a complete full dual pair Pl J+L S ~ /'2- 
of Poisson manifolds [53] (with connected and simply connected fibers) defines 
an equivalence bimodule of the corresponding Poisson algebras. Hence there is 
a bijective correspondence between the categories of symplectic realizations of 
/'1 and /'2, respectively [56]; from an algebraic point of view this means that 
the Poisson algebras C°°(PI ) and C ~ ( P z )  have equivalent classical representa- 
tion theories. This equivalence is implemented through a generalized symplectic 
reduction procedure (see Subsection 2.1 below). 

There is an obvious formal analogy between these classical equivalence bimod- 
ules, and the imprimitivity bimodules ,,4 --* L *- /3 of operator algebras defined 
by Rieffel [43]. Under certain conditions, the main one being the existence of 
compatible rigging maps ( , )t~ : L x L ~ / 3  and ~t( , ) : L x L ~ .4, the repre- 
sentation theories of .4 and B are isomorphic, and the isomorphism is implemented 
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by a generalized induction procedure given in [43] called Rieffel induction [ 13]. 
Indeed, the term 'Morita equivalence of Poisson manifolds' [57] was clearly 

inspired by the terminology of (strong) 'Morita equivalence of operator algebras' 
[43,44]. For example, under certain conditions (cf. Subsection 4.3) the Poisson 
manifold (T*P)/H is Morita equivalent to h* through the equivalence bimodule 
T* P, and on the quantum side we find strong Morita equivalence of the C*-algebras 
/C(L2(p) ) n and C* (H)  through the imprimitivity bimodule L2(P). 

In the light of the above evidence, and more to be given in the main body of the 
paper, it is not very daring to suggest that the quantum analogue of the generalized 
symplectic reduction procedure sketched earlier, is provided by Rieffel induction. We 

will now briefly describe this construction (cf. [43,13] for an exhaustive treatment, or 
Section 3.1 below for a brief summary of rigging maps and Rieffel induction). 

In symplectic geometry, a Poisson map J : S ~ P -  plays a double role: it relates S 
to P, and provides a Poisson morphism J* : C~(P  -) --~ C~(S).  In operator theory, a 
(right) action of a *-algebra B on a Hilbert space 7-/amounts to a *-anti-homomorphism 
7r- :/3 --~ E(7-/), which is the 'quantum' analogue of J*. It is now tempting to define 
a quantum version of J as some map between the projective space l l~  and the state 
space of B, and construct an induction procedure on this basis, but this appears to lead 
nowhere unless B = C*(H) for compact H. 

The correct 'quantization' of the moment map is a so-called rigging map (alternatively 
called an operator-valued inner product). The starting point is a right B-module L 

(generally without an inner product). A rigging map (., ')t~ is then defined on L ® L 
(algebraic tensor product), and takes values in B. The main property it has to satisfy is 

(~b, ~B)t~ = (~, q~)t3B for all ~p, ~o C L and all B E/3. 
We look at the special case that/3 is a suitable dense subalgebra of C*(H), which 

leaves a dense subspace L of a Hilbert space 7-/ invariant. Here ~'- above is defined 
through a unitary representation 7r of H on 7-/. Then the rigging map is defined by 
(~P,~')c-(n) : h ~ (1r(h)~o,~b), where (., .) is the inner product on 7-/. This defines a 
function f~,,~ on H, and we choose L in such a way that f~,,~ E/3 for all ~b, ~ E L. If 
H is compact we can simply take L = 7-(. In the non-compact case, for e.g., 7-[ = L2(G) 
with H acting on the right, one may take/3 = Co(H) and L = Cc(G). 

Now suppose that another *-algebra .A acts on L, and the condition (A~,,~o)t3 = 
(~P, A*q~)B is satisfied for all A E .A. Under favourable circumstances a representation 
7rx(/3) on a Hilbert space 7-/x may then be induced to a representation ~rX(.A) on 
a certain Hilbert space ~ x .  The crucial step in this induction procedure is to start 
with L ® ~ x ,  equipped with a sesquilinear form (., ')0 defined by 0P ® v,~o ® w)0 = 
(Tr x ( (~o, O)t~ ) v, w) 7% ; this is positive semi-definite if the rigging map is positive, and 
in that case one may quotient L ® 7-/x by the null space of (-, ")0, and complete it into 
a Hilbert space 7-/x, which inherits the left-action of ,4 from L. 

Forming L ® ~ x  with the given sesquilinear form is the quantum counterpart of 
taking j -1  (/~) C S (for some/z  C O) with its pre-symplectic form borrowed from S 
in the Marsden-Weinstein reduction process, and quotienting the null space of (., ")0 
away is obviously the quantum analogue of quotienting j - l  (/z) by its characteristic 
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(null) foliation, thus obtaining a symplectic space symplectomorphic to j - 1  ( O ) / H .  

These formal analogies will be more clearly visible in the description of the generalized 
symplectic reduction procedure defined in Subsection 2.1 below. 

In the remainder of this paper we will describe the above ideas in detail, and provide a 
fair number of examples illustrating why it seems a good idea to quantize the generalized 
symplectic reduction/induction technique by the Rieffel induction process. For example, 
we give classical Poisson versions of both the imprimitivity theorem and the theorem 
on induction in stages [43,13]. 

We close this Introduction with some loose remarks. These may be supped without 
pain. 

A point/~ E h* may fail to be a regular value of the moment map [ 1,31], which 
leads to some difficulties in the reduction procedure [3,27]. In brief, the reduced space 
is no longer a symplectic manifold, but a singular space (in the sense of algebraic ge- 
ometry), which admits a symplectic stratification. This situation is of prime importance 
for applications in physics, for the physical phase space of Yang-Mills theories [2] 
as well as of general relativity [ 14,4] has such singularities at points where the solu- 
tions of the field equations possess symmetry. Some consequences of these singularities 
for the corresponding quantum theories were investigated for gravity by V. Moncrief 
(unpublished), and for finite-dimensional models in [ 12]. 

Such singularities may, of course, equally well occur in the more general symplectic 
reduction procedure discussed above (and in the next subsection). Our quantization with 
Rieffel induction suggests a general approach to the quantum situation. The analogue of 
a singular value/.t (or rather its co-adjoint orbit) is a representation ~rx(H) for which 
~-x((~b,~)B) fails to be a positive operator on ~ x  for certain ~ C L. (Unlike Rieffel 
[43], we do not require the rigging map to be positive, in the sense that ( ~ , ~ B  >_ 0 
for all ~b C L, as this property is not satisfied in many interesting examples, and the 
induction procedure can be carried out with a weaker assumption [ 13], cf. Subsection 
3.1.) Therefore, the rigged inner product (., ")0 is not positive semi-definite on L®7~ x, 

and the induced space 7~x can only be defined as a Hilbert space if the vectors in 
L ® ~ x  of negative rigged norm are first removed. Evidently, this problem will not arise 
if the rigging map is positive. In general, the quantum reduction procedure is better 
behaved than its classical counterpart, cf. Proposition 12. For we will prove that this 
non-positivity can only occur if H is not amenable, whereas the classical reduced space 
may already be singular when H is compact. 

The quantization procedure based on Rieffel induction will have to be compared with 
the fashionable BRST quantization scheme (cf. e.g. [21,19]). For the moment, we 
just wish to point out that serious difficulties of principle with the latter were spelled 
out in [ 11,25], and that on the practical side "at present the computation of BRST- 
cohomology is an extremely difficult problem" [ 19]. Moreover, the Rieffel induction 
process mimics the symplectic procedure more closely than any BRST treatment we are 
aware of (including the bosonic BRST theory in [ 10] ), and appears to be simpler both 
conceptually and computationally. On the other hand, the proper domain of the rigging 
map has to be found case by case, and for C*-algebras not defined by groupoids even 
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the rigging map itself is not given a priori. Finally, all our examples are defined for 
finite-dimensional Poisson manifolds, and one has yet to see how quantization through 

Rieffel induction will perform in generic infinite-dimensional situations (where the 
BRST technique has enjoyed certain success [21] ); see [26] for the treatment of free 
abelian gauge theories. 

Finally, the reader may wonder why the generalized moment map J : S ---* P - ,  which 
is merely a morphism between a symplectic and a Poisson manifold, is quantized by a 
structure which eventually involves bimodules. However, the generalized moment map is 

equivalent to the structure Coo(P) ~ i Coo(S) J~_ Coo(P),  where Coo(P) ~ is the subset 

of C°°(S)  consisting of functions whose Poisson bracket with any J ' f ,  f E Coo(P),  

vanishes (and i is the inclusion). 
This already looks like the bimodule £ B ( L )  ~ L *-- 13, where £t~(L) is the algebra 

of linear operators A on L which are compatible with the rigging map [43, Section 
2] (our notation is different from this reference). Compatible here means that for 
such A an A* must exist such that (A~b,~)B = (~P,A*~)t~ for all ~b,~p E L, and that 
(A0, A~b)B _< k2(~P, ~b)t3 for all $ E L, and some constant ka. (If  one quotients £t3(L) 

by the operators A for which ka = 0, one obtains a pre C*-algebra, whose completion 
is the so-called C*-algebra of the given rigged space.) 

Moreover, if one insists that the generalized moment map be a morphism, one could 
further jusitify our quanization proposal by pointing out the close connection between 
morphisms of operator algebras and so-called correspondences [6]. A correspondence 
between two von Neumann algebras 9X, 92 is a left-92 right-gx bimodule where the 
module is a Hilbert space, and the actions commute. For properly infinite von Neumann 
algebras a morphism is equivalent to a correspondence. For arbitrary C*-algebras one 
may pass from a morphism to an associated correspondence, which however depends 
on the choice of a faithful state on the source of the morphism. 

2. Symplectic induction 

2.1. Generalized Marsden-Weinstein reduction 

As pointed out in the Introduction, Marsden-Weinstein reduction is a special case 
of a more general symplectic induction technique. The general procedure described 
below is essentially due to Xu [56, Prop. 2.1]. By rewriting his construction omitting 
any reference to symplectic groupoids, we are able to avoid the restriction in [56] to 
integrable Poisson manifolds (in the sense of [8,37] ), while also the parallel with the 
Rieffel induction technique in the quantum case is more transparent in this way. 

Definition 1. Let S and Sp be connected symplectic manifolds, P a Poisson manifold, 
P -  the same manifold as P but equipped with minus its Poisson bracket, and let 
J : S ---* P -  and p : Sp -~ P be Poisson maps. Then S *p Sp C S × Sp is defined by 
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S *e Sp = { ( x , y )  E S × Sp [ J (x )  = p(y )} .  

Each f E C°° (P)  defines a vector field ~ f  on S x Sp by 

~ f g  = { J * f  - p*f ,g} ,  

where the Poisson bracket is the product one on S x Sp. 

(2.1) 

(2.2) 

Theorem 2. S *e Sp is co-isotropically immersed in S x Sp. The collection of vector 
fields {:~/ I f E C a ( P ) }  defines a (generally singular)foliation ~, of S *p Sp, whose 
leaf space S p = S *p S p / ~  coincides with the quotient of S .p Sp by its characteristic 
(null) foliation. 

Proof. The dimension counting argument in the proof comes from [20] and [56]. 
We write M for S *e Sp for simplicity. Let X E TxS and Y E TySp; then X + Y E 

T(x,y)M iff J . X  = p.Y. The dimension of T(x.y)M at any point ( x , y )  E M equals 

dimS + dim S p -  ( r a n k J . ) ( x ) ,  so that the dimension of T(x,y)M ± (the symplectic 
orthoplement of TM in T(S x Sp) at ( x , y ) )  is ( r a n k J . ) ( x ) .  Let br(x,y) denote the 
linear span of the collection of vector fields ~ f  taken at (x, y) ,  where f runs through 

C a ( P ) .  Then dim ~(x,y) = (rank J . ) ( x ) .  We next show that ,~(x,y~ C T(x.y)M ±, so that 

in fact .~(x,y) = T(x,y)M ±. Namely, let X+Y E T(x,y)M, as above; then with to = tos+tosp 
the symplectic form on S x Sp, one has 

(tolX + Y,,Xf)(x,y) = (d( J* f - p ' f ) I X  + Y)(x,y) = O. 

Moreover, -~(x,y) C T(x,y)M by a similar calculation: if Xg is the Hamiltonian vector 

field of g, then by Lemma 1.2 in [53] J . X j . f  = - X f ,  where Xf  is defined w.r.t, the 
Poisson bracket on P (rather than P - ,  hence the sign) and p.Xp. f  = Xf. Thus Xf = 

X j . f  - Xp.f  E TM. Therefore, M is co-isotropically immersed in S x Sp. Furthermore, 
[ fQ, ~fg ] = -X{f,g} (Poisson bracket on P) ,  so that by the Stefan-Sussmann theorems 
(cf. [29, Thm. 3.9, 3.10, App. 3] ) the distribution b r defines a (singular) foliation, 

called ~" as well. [] 

Under the additional assumption that S p is a manifold, we have accordingly found a 

new symplectic space S p, which carries a 'classical representation' of certain Poisson 
subalgebras of C ~ ( S ) ,  as follows. We borrow some notation from operator algebras: 
if B is a subset of  C ~ ( S ) ,  then B'  denotes its Poisson commutant, i.e. the set of all 
functions in C°°(S) whose Poisson bracket with each element of B vanishes. Also, 
[ x, y ] E S p =-- ( S x p S p ) / ~  stands for the equivalence class of  a point (x, y) E S x e Sp 
under the foliation ~'. 

Proposition 3. Let A C_ ( J* C ~  ( p ) ) ' be a Poisson subalgebra of C ~  ( S). Then the 
map rrP : A --+ C°°( SP), defined by 

rrP(f) ( [x, y] ) = f ( x )  (2.3) 

is well-defined, and is a Poisson morphism. 
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This is obvious. We call 7rO the classical representation of  A induced by the map 

p : Sp ---, P. Suppose that we have a Poisson manifold P2, and a Poisson map J2 : 

S -4 P2, such that J~C°°(P2) C C a ( S )  Poisson-conunutes with J*C°°(P);  then the 
proposition is equivalent to the production of  a Poisson map JP : S p --+ P2 defined by 
JP([x ,y ] )  = J2(x) .  

It may be worth spelling out how Marsden-Weinstein reduction emerges as a special 
case. We take a connected Lie group H acting on S from the right in a strongly 
Hamiltonian fashion [ 17,29] (see Subsection 3.3 below for the general case), so that 

there is an equivariant moment  map J : S ~ ( h * ) -  (hence P = h*).  ( I f  a left-action 
with moment  map J -  : S ~ h* is given, simply put J = - J - . )  We then take Sp = (.9, 
a co-adjoint orbit in h*, and p : (_9 --+ h* to be the inclusion map, which is evidently 

a Poisson map if h* and (.9 are endowed with the Lie-Poisson structure. Then clearly 

(S Xh. 0 ) / ~  ~-- J - I ( O ) / H ,  but note that the null foliation of  J - I ( O )  C S does 
not coincide with the H-foliation (whereas these foliations do coincide on S Xh* (.9 C 

S x (.9). Hence the above diffeomorphism is an efficient way of  providing j -1  ( O ) / H  
with its correct symplectic structure (which is usually obtained from the diffeomorphism 

j - I  ( O ) / H  ~- J- l ( ix) /H~, ,  where /x  E (.9 is arbitrary, and H u is its stabilizer). 
Another special case is the Mikami-Weinstein reduction procedure [ 37 ]. They assume 

that P, which is F0 in their notation, is the unit space of  a symplectic groupoid, and their 

reduced space j -1  ( u ) / F ,  emerges from Theorem 2 by taking S o to be the symplectic 

leaf in F0 containing u, and Jl the inclusion map in F0. 
To close this section, we note that Theorem 2 can be generalized to arbitrary Poisson 

manifolds (rather than merely symplectic ones).  

Generalized Definition 1. Let S and Sp be connected Poisson manifolds . . . .  and con- 
tinuing as in Definition 1. 

Genera l ized  T h e o r e m  2. The collection of vector fields { fQ I f C C a ( P ) }  defines a 
(generally singular)foliation ~,  of S *e Sp, whose leaf space S p = S *p S p / ~  carries a 
reduced Poisson structure in the sense of Marsden-Ratiu [32]. 

Proof Making contact with the notation in this reference, we define M C P = S x Sp as 

M = S*p Sp, and the subbundle E as {)~f I f E C°~ (P )} .  Also, the map B : T*P ---+ TP 

is defined by the Poisson structure, i.e., B ( d f )  = Xf. Finally, E~x - {ce E TxP ] ( a ,X)  = 

0vx c Ex}. 
Firstly, exactly as in the proof of Theorem 2, it follows that E C TM. Secondly, 

B(~xx) C TxM. To show this local property, take (x = dgl + dg2, with gi = 7r'hi, the 
natural projections W'l : S × Sp --+ S and w'2 : S × Sp ~ Sp, h| E Ca(S), h2 @ 
C~(Sp). Then the property that ce E B(E~x) is equivalent to the equality {J ' f ,  h,} = 
{p'f ,  h2} Vf C Ca(P) .  Hence J.Xg, = p.Xg 2, which proves the claim. 

Generalized Theorem 2 now immediately follows from the Poisson Reduction Theo- 
rem in Section 2 of  Marsden-Rat iu  [32].  [] 
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2.2. Symplectic imprimitivity theorem 

The well-known imprimitivity theorem of Mackey [ 50] has a far-reaching generaliza- 
tion due to Rieffel [ 43,13,44]. This generalization establishes a bijective correspondence 

between the respective representation theories of two operator algebras satisfying a cer- 

tain equivalence relation, known as strong Morita equivalence. A satisfactory 'classical' 
(that is, Poisson-algebraic) analogue of this equivalence relation and some of its rami- 

fications was recently given by Xu [57]. For the convenience of the reader, we repeat 

Xu's definition of Morita equivalent Poisson manifolds [Def. 2.1 in [57]; the concept 
of  dual pair, which is central to the definition, is due independently to Weinstein [53] 

and Libermann [28] (who used the term 'symplectically complete foliation')].  

Definition 4. A classical equivalence bimodule of a pair of Poisson manifolds (/'1, P2) 
consists of a symplectic manifold S and a pair of Poisson morphisms J1 : S --* Pl- and 

J2 : S ~ P2, such that P2 ~ S ~ P1- is a complete full dual pair with connected and 
simply connected fibers. This means that J '{C°°(Pl - )  and J~C°°(P2)  are each other's 

Poisson commutant in C a (S), that the leaf spaces of the foliations defined by the fibers 

of Jl and J2 are manifolds in the quotient topology, and that Jl and J2 are surjective, 

as well as complete as Poisson maps. 
Poisson manifolds PI and P2 are called Morita equivalent if there exists a classical 

equivalence bimodule in the above sense. 

A Poisson map J : S ~ P is said to be complete if the Hamiltonian vector field Xj*f o n  

S is complete (that is, has a flow defined for all times) i f X f  on P is, for all f C C a ( P ) .  

This condition is the classical analogue of the requirement that a representation of a 

*-algebra ,,4 on a Hilbert space be *-preserving, that is, it is a self-adjointness condition. 
Namely, in the latter case a self-adjoint element A of ,,4 is mapped into a self-adjoint 
operator ~r(A) which defines a complete flow on the (projective) Hilbert space carrying 

the representation, viz. the (projection of) the unitary group generated by 7r(A). The 

condition that the fibers j /-I  (x) be simply connected for each x E Pi (i = 1,2) cannot 

be omitted, as will become clear from the proof of the next theorem. 
We recall that a symplectic realization of a Poisson manifold P consists of a sym- 

plectic manifold S and a Poisson map p : S ~ P [53,8]. This leads to a Poisson 
morphism p* : C a ( P )  ~ C a ( S ) ,  which is the classical analogue of a representation 
of a *-algebra on a Hilbert space [24]. There is an obvious equivalence relation between 

symplectic realizations, that is, Pl : $1 ~ P and P2 : $2 ~ P are equivalent if there 
exists a symplectic diffeomorphism T : Sl ~ $2 such that pl = p2 o T. In what follows, 
a realization will mean a symplectic one. 

The following theorem was first proved by Xu, who assumed that the Poisson man- 
ifolds in question are integrable. However, combining Thms. 4.18 and 5.2 in [55] one 
infers that this is always the case in the given situation (note that the idea of a sym- 
plectic affinoid space introduced in [55] generalizes a full dual pair, so that it would 
be interesting to find a corresponding generalization of Morita equivalent algebras in 
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operator algebra theory). Xu's proof (which is spread out over Section 4 of [56] and 
Section 3 of [57] ) follows the lines of first showing that integrable Morita equivalent 

Poisson manifolds have Morita equivalent symplectic groupoids, which in turn have 

equivalent categories of complete symplectic realizations. Our proof below avoids the 
use of symplectic groupoids, which may be a loss from a geometric point of view, but 

has the advantage of being similar in spirit to the proof of the imprimitivity theorem for 
operator algebras [ 43,13 ]. 

Theorem 5. Let P1 and P2 be Morita equivalent Poisson manifolds. Then there is a 

bijective correspondence between their respective complete symplectic realizations. 

Proof. Given the equivalence bimodule P2 ~ S ~ Pl-, there is a second equivalence 

bimodule P1 ~ S -  ~ P2-- Given a realization p : Sp ~ P1, one uses the former 

equivalence bimodule to obtain a realization JP : S p ~ P2, where S p = S , p  1 S p / f  is the 

symplectic space constructed in Theorem 2, and JP is given by J P ( [ x , y ] l )  = Je(x).  
Here [ ( x , y ) ] l  is the equivalence class of ( x , y )  C S x Sp under the foliation ~', and 

the map JP is well-defined, because by the theory of full dual pairs [53] the foliation 
b r restricted to S coincides with the foliation by the fibers of J2. Also, the same fact 

combined with the assumption that the quotient of S by the J2-foliation is a manifold 

implies that S p is a manifold. 
We now relabel S p as S~, and JP by o-, and use the second equivalence bimodule to 

find the corresponding induced realization J~ : S '~ ~ P1. Below we construct a sym- 
plectic diffeomorphism V : S ~ ~ Sp, which satisfies J'~ = p o V. Since all constructions 

evidently preserve completeness, this establishes the theorem. 
Consider (S *pl Sp) *p2 S -  C S x Sp × S- ,  that is, the space of triples (x ,O,y)  

satisfying J l (x )  = p(O) and J2(x) = J2(Y). The space S ~ is obtained from this by 
a double foliation: the first one )rl on S x Sp generated by the Hamiltonian vector 

fields defined by the functions J~ f  - p ' f ,  f E C~(P1) ,  and the second one .Y'2 on 
S x S -  generated by the Hamiltonian vector fields defined by the functions tr*g - Jig, 
g ~- C ~ (P2) .  Let a triple (x, O, y) as above be given. As above, we denote equivalence 

classes defined by the first foliation by [. , .  ]1, and those defined by the second one by 

[ ' ,  "]2. 
We now once again exploit the crucial fact from full dual pairs that the foliation of 

S generated by the the Hamiltonian vector fields defined by the functions J~f,  f E 
C~(P1  ), coincides with the foliation by the fibers of J2. Hence since J2 (x) = J2 (Y), if 
x and y are sufficiently nearby we can find f E C~(P1)  for which the flow ~ot of Xj~f 
satisfies ~o0(x) = x, ~ol (x) = y; in general, the analogous curve connecting x and y is 
only piecewise smooth, each smooth segment being a trajectory of a vectorfield Xj~f,, 
for some f i  C C°°(P1), cf. Proposition 1.3 in [53]. Let ~t be the flow of - X p . f  on 
Sp; by our assumption that p be complete, this flow exists for all times, and we can 
define 0 = ~1 (0).  By standard foliation theory, 0 only depends on 0 and the homotopy 
class in the fiber J21 o Jz(x)  of the path {q~t}t~t0,1] connecting x and y. But this fiber 
is assumed to be simply connected, so that 0 is uniquely determined by (x, 0, y).  
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We now define V : S ~ ---+ Sp by V ( [ [ x , O ] l , Y ] 2 )  = 0. This is well-defined, and 
is a symplectomorphism: given a triple ( x , O , y )  we have seen that we may choose a 
representative (y, 0, y) in the class ( [x, 0] l ,y )  defined by .F1, and we subsequently note 
that the foliation 5r2 coincides with the foliation by the fibers of Jl. Since Jl (y)  = p(t~) 
is determined by t~, it follows that V is a bijection. It is a symplectomorphism by 
Theorem 2. 

Finally, 

J a ( [ [ x , O ] l , y ] 2 )  = J l ( Y )  = P(O) = p o  V ( [ [ y , O ] l , Y ] 2 )  = p o  V ( [ [ x , O ] 1 , y ] 2 ) ,  

so that J'~ = p o V, as announced. [] 

Note that we could have weakened the definition of a classical equivalence bimodule 
by omitting the manifold condition on the foliations of S by Jl and J2 in Definition 4. 
In that case we would have obtained a bijection bewteen the set of realizations Sp of P1 
for which S p is a manifold, and the analogous set defined for P2. 

Note, that [20] and [53] already mention the fact that (in modem parlance) the sym- 
plectic leaves of Morita equivalent Poisson manifolds are in bijective correspondence. 
This is obviously a special case of Theorem 5, for the injection of a symplectic leaf into 
its Poisson manifold is of course a special instance of a symplectic realization (in fact, 
such realizations play a preferred role, in that they are irreducible in the sense defined 

in [24] ). 

2.3. Symplectic induction in stages 

After the imprimitivity theorem, the second most important and characteristic result 
in Mackey's theory of induced group representations is the theorem on induction in 
stages [30]. This was generalized by Rieffel to his setting of induced representations 
of C*-algebras [43,13]. The symplectic counterpart is very easy, and the proof of the 
following theorem consists of simple bookkeeping, which we leave to the reader. 

Let J : S ~ P -  and p : Sp ~ P be Poisson maps, with S symplectic, and let 
7rp : A ~ Coo(S  p) be the corresponding induced representation of an appropriate 
Poisson algebra A C J * C ° ° ( P - )  ' C C ° ° ( S )  (cf. Proposition 3). Now assume that the 
realization p is itself induced, in the sense that there are a Poisson manifold /5 and 
symplectic manifolds S and S~, as well as Poisson maps J : S --~/5-, J : S ~ P, and 
o" : S,~ ~ P, such that S t, ~- CS~ and p ~- J~ (where a r~" : ~ ~ P is constructed as 
in Theorem 2 and the text following Proposition 3, with S, P, P2, J, .I2, St,, p replaced by 
S,/5, P, a r, J,  S,~, o-, respectively). 

Now form the symplectic manifold S' = (S  *e S ) / . F  as in Definition 1 (assuming 
that the leaf space of the foliation is indeed a manifold) and Theorem 2 (that is, S *e 
consists of those pairs (x, y) E S x S for which J ( x )  = J ( y ) ,  and the foliation 5 r is 
generated by X j .  f - X~ f , f E C o o ( P ) ) .  
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Theorem 6. With the above notation: 

i) There is a well-defined Poisson map J' : S I --~ [ ' -  defined by Jr( [x, y] ) = J ( y ) ,  

and a Poisson morphism IX : A -+ Cc~(S ' )  given by ( I t ( f ) ) ( [ x ,  y ] )  = f ( x ) .  

ii) The induced symplectic space (St)  ~" = (S'  *p Sc~)/~ constructed with the maps 

f and o" is symplectomorphic to S °, and the corresponding induced representation 

( J ' )~  o tx o f  A on C °° ( ( S ' )  ~) is equivalent to 7r p on C °° (SP). 

iii) In the special case that one has a Poisson manifold P2 and a Poisson map 

J2 :: S -~ P2, so that A = J~C°°(  P2), one has thus obtained a symplectic realization 

J~ : ( S')  ~ --+ P2 which is equivalent to JP : S ° --~ P2. 

It is worth spelling out the special case of  Marsden-Weinstein reduction in stages. 

Take a connected Lie group G with closed connected subgroup H C G, and consider 

the actions G --~ T*G ~-- H, being the pull-backs of  the action of  G on itself by left- 

multiplication, and of  the right-action of  H on G by right-multiplication. The symplectic 

fonn on T*G is ~o = dOL, with 0L the Liouville form. This leads to two moment maps 

g* ~- T*G ~ ( h * ) - .  Pick a co-adjoint orbit (_9 C h*, and form the reduced space 

( T ' G )  ° = J R  1 ( O ) / H .  This produces a Poisson map j o  : ( T . G ) O  ~ g.,  which is 

just the moment map for the left G-action on ( T ' G )  ° ,  which is inherited from the left 

G-action on T*G. 

In the left trivialization of  T*G _~ G x g* this reads as follows. The Liouville form 

is OL(x ,p )  = paO~(x) (where {0a}~ is a basis of  left-invariant one-forms on G),  

J L ( x , p )  = xp,  J R ( x , p )  = p r h, with x C G and p E g*; xp denotes the co-adjoint 

action of  x on p. Hence ( T ' G )  ° consists of  equivalence classes [x ,p]H,  such that 
p [ h C (_9; the equivalence relation is (xh ,  h - l p )  ~ ( x , p )  for all h E H. The induced 

G-action is y[x ,p] t4  = [yx ,p]H,  and the moment map is jO( [x ,p ] t_ / )  = xp. All this 

can be found in [33] .  

Suppose G acts on a symplectic manifold S from the right in strongly Hamiltonian 

fashion, with associated moment map J : S --* ( g * ) - .  We then induce from ( T ' G )  ° ,  

obtaining a symplectic space S ( r ' c ) ° ,  defined as usual: we start with S .g. ( T ' G )  ° = 

{(s,  z)  E S × ( T ' G )  ° I J ( s )  = JL°(Z)}, and quotient by the characteristic foliation, 

which in this case coincides with the foliation generated by the G-action p given by 
px( s, z ) = ( s x , x - l  z ). Hence S (r -c)°  = (S*g.  ( T*G) ° )  /G. 

On the other hand, we may restrict the G-action on S to H, with moment map 

Jn : S ~ h* simply given by the restriction of  J to h. This leads to the reduced space 

S ° = JH 1 ( O ) / H .  

Corol la ry  7. With the notations introduced above, S ( r ' c ) °  ~- S ° .  

Proof  This follows from Theorem 6 above, with P = g*, S = T 'G,  P = h*, S,~ = (.9, 
and o- = io  (the inclusion map of  (.9 into h* ). To obtain Corollary 7, one only needs to 
verify that (S *g. T * G ) / G  is symplectomorphic to S, which is Proposition A4 of  [54].  

It may be instructive to give a direct proof, too. The induced space S (r -c)°  con- 

sists of  equivalence classes ~[s , x ,p ,O]H,  where the quadruple ( s , x , p , O )  E S × G × 
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g* x O satisfies J(s)  = xp and p [ h = 0. The equivalence relation is ( s , x ,p ,O)  ,,~ 
(ys, y x h - l , h p ,  hO) for all y E G and h C H. It is then readily verified that W : 
S (T*°)° --* J ~ I ( O ) / H  given by W(o[s ,x ,p ,O]H)  = [x - i s ]H  defines a symplecto- 

morphism. [] 

This corollary is not as academic as it may appear. As shown in subsections 4.1, 4.2, 
any co-adjoint orbit of a nilpotent or linear semi-direct product Lie group G is of the 
form (T 'G)  ° ,  so that Marsden-Weinstein reduced spaces with respect to such groups 
can always be obtained in a substantially simpler fashion by reducing with respect to an 
appropriate subgroup H. Thus the semidirect product reduction theorem of [ 33 ] (also 
cf. [ 31 ] ) follows from our theorem on symplectic reduction in stages. 

3. Quantization of the symplectic induction procedure 

3.1. Rieffel induction 

The so-called Rieffel induction process, which we propose as the quantum counterpart 
of generalized Marsden-Weinstein reduction ("symplectic induction") is discussed in 
detail in [43,13], so we will just recall the basic definitions and constructions. Let 
.4 and B be *-algebras which act on a linear space L from the left and from the 
right, respectively. (In physics, this situation corresponds to having a quantization of 
the unconstrained system, as well as of the algebra of constraints: then L is a subspace 
(preferably dense) of a Hilbert space ~ ,  which is the state space of the unconstrained 
system. In that case, L inherits an inner product, which is not essential for the induction 
process, although its existence may be exploited in particular cases, cf. (3.7) below.) 
In any case, B will always, and ,4 will usually a be pre-C*-algebra or a C*-algebra, but 
it is possible (and necessary for some applications, cf. Subsection 4.5 below) to take 
.4 to be an Op*-algebra of unbounded operators [48], that is, a *-algebra defined on 
a common dense domain D C 7-/; in that case the space L C_ 7-I introduced below will 
have to lie in D. The key ingredient of the induction process, playing the role of the 
quantization of the generalized moment map J in symplectic geometry (cf. Def. 1), is 
a rigging map. This map, denoted by (-, ")t~ is defined on L x L, takes values in B, and 
must satisfy the following conditions for all ~b, ~o E L: 

(i) (a~p,/z~o)t3 =A/z(~/,,q~)B for all h,/z E C; 
(ii) (~0,~o)b = (~o,~)t~; 

(iii) (~p, ~oB)B = (~, ~o)BB for all B c B; 
(iv) (a¢ ,  ~p)t~ = (0, A*~o)t~ for all a E .4. 
Thus the rigging map is an operator-valued sesquilinear product; if it is also positive in 
the sense that (~O, ~9)B >_ 0 for all ¢ C L, and if L = 7-/is a Hilbert space, with .4 and 
B C*-algebras, then 7-[ equipped with the rigging map is called a Hilbert C*-module 
(for .4); see [51] for a 'friendly introduction' to this topic. (In the quantization of 
constrained systems the main difficulty is to identify L and the rigging map, given 7-/ 
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and the actions of .A and/3 on it.) 
The aim of the Rieffel induction process is to obtain a representation 7rX (..4) on some 

Hilbert space 7-/x, given a representation 7rx(/3) on a Hilbert space 7-/x. This is possible 
if 7r x is L-positive in the sense that ~'x((~,~)t~) -> 0 for all ~ E L, as an operator on 
7-/x. If so, one obtains ~-x in two steps: firstly, the algebraic tensor product L ® 7Y x is 
formed, and endowed with a bilinear form (.,-)0, defined by 

( ~ ® v, q~ ® w)o = ( 7"rx( (~o, ~P)t3 )v, w) x, (3.1) 

where (., ")x is the inner product in 7-/x (taken linear in the first entry, unlike the rigging 
map; we follow the conventions of [43,13] ). This form is positive semi-definite if ¢r x is 

L-positive. Secondly, one forms the quotient of L @ 7-/x by the subspace 7-/0 C L ® 7"/x 
of vectors with vanishing (., ")0 norm, and completes the quotient (equipped with the 
form inherited from (-, ")0) into a Hilbert space 7-/x. (To make this procedure resemble 
the formation of the induced symplectic space S p in Theorem 2 a little bit more, one 
could follow [43] in introducing the intermediate step of forming the tensor product 
L®u 7-[ x, which is the quotient of L ® H  x by vectors of the type ~9B ®v - ~  ®Trx(B)v, 
B E /3, but by (iii) and (3.1) above such vectors are automatically of zero norm, so 
this intermediate step is incorporated in quotienting L ® 7Y x by its null space. It is the 
latter step which is obviously the quantum analogue of the third step in forming S p, 
namely the quotienting by the null foliation of the induced symplectic form on S *p Sp). 

Denoting the image of an elementary vector ~ ® v E L ® 7-/x in the completion 7-( x 
of the quotient L ® 7-tx/7-[o by ~p~v, the representation 7rX(.4) is then defined on the 
subspace of 7-/x of finite linear combinations of such images by 

~X(A)~,~v  = ( A ¢ ) ~ v ,  (3.2) 

compare with (2.3). This representation is well-defined on account of (iii) and (iv) 
above. If ,,4 is a (pre-)C*-algebra, then the boundedness of A E .,4 does not guarantee 
that 7rX(A) is a bounded operator on 7-( x. On top of that, it is necessary and sufficient 

that the bound 

~x(  (a~,a~k)t3) < [IAll2Crx((~,~)t3) (3.3) 

holds for all ¢ E L. A stronger condition, implying this bound, is that the maps 
T o : .,4 ~ / 3  defined by To(A) = (A~,~b)u are continuous for each ¢ E L. This, in turn, 
is implied if ..4 and/3 are C*-algebras, and T o is positive (that is, (A~, A~O)u > 0 in/3 
for all ~p E L and all A E .A), for a positive map between C*-algebras is automatically 
continuous. Of course, this would imply that the rigging map itself is positive (in the 
sense explained after the list of conditions above), so that any representation ¢rx(/3) 
may be used to induce from. In any case, if 7rX(A) is bounded for all A in a pre-C*- 
algebra A one may extend the induced representation to the completion of .,4. See [43, 
Prop. 4.27], [13, XI.7.11, 12], [44] for more information on these points. 

The form of 7-( x as given is useful for the computation of physical correlation functions 
(that is, expectation values of (time-ordered) products of the type (¢rX (A1 ( tl ) ) - - • 
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7rX(An(tn))12, J'2), where Ai E `4, and /2 is some physically relevant state in 7-/x), 
which can be evaluated in L ® 7-( x on any pre-image of ~, using the inner product 
( ' , ' )0;  the contributions of intermediate states with zero norm will automatically drop 
out. Nonetheless, it is useful to have an alternative realization of 7-/x [ 18]. Let L be 
the conjugate space of L (which coincides with L as an additive group, but has the 
conjugate scalar multiplication), and let £(L,7-[ x) be the space of linear maps of L 
into 7-/x. Then define U : L ® 7-/x ~ / ~ ( L ,  7-/x) by 

( U(~b ® v) ) (~p) = 7r x ( (~p, ~P)t~ )v. (3.4) 

One can define an inner product (., .)x on the image ~ of L @ 7-/x in L;(L,7-(x) under 

U by 

( u ( ¢  ® v), u (~  ® w) )x = (¢rx ((~, ¢)~)v, w)x; (3.5) 

this form is positive definite, and the closure of ~ in this inner product yields a Hilbert 
space ~x .  Noticing that U exactly annihilates 7-/0 c L @ 7-/x, it follows that U quotients 
and extends to a well-defined unitary operator 0 : 7-/x ~ 7~ x. 

We continue by recalling Rieffel's generalized imprimitivity theorem [43,13,44], 
which we will actually use later on, and whose explicit form will make it clear that the 
symplectic imprimitivity theorem (Theorem 5 in Subsection 2.2) is indeed a 'classical' 
version of the former. We assume that ,4 and /3 are (pre-)C*-algebras, acting on L 
as above, which is equipped with a rigging map (., .)~ satsfying all properties stated 
earlier. L is called an , 4 -  13 imprimitivity bimodule (at least in [43,13]; later the 
terminology 'equivalence bimodule' was adopted [44] ) if in addition there is a rigging 
map ~t(', ") : L x L ~ ,4, satisfying the same properties of the/3-rigging, but with the 
roles of ,4 and 13, and left and right interchanged. Moreover, the following conditions 

must hold: 
i) the bounds (3.3), as well as the corresponding ones with ,4 and/3 interchanged, 

hold; 
ii) the linear span of {(¢,~}t~ I ¢,~' E L) is dense in /3, and similarly with /3 

replaced by ,4; 
iii) A(~,q~)( = ¢(~o, sr)t~ for all ~o,~/,, ( E L. 
The imprimitivity theorem states that if there exists an ,4 - 13 imprimitivity bimodule 

(in which case ,4 and /3 are called strongly Morita equivalent) then there is a bijec- 
tive correspondence between the set of L-positive representations of ,4 and /3 (which 
bijection preserves a number of properties of representations, such as direct integrals 
and weak containment, but upsets others, such as cyclicity [43,13] ). The representation 
of .4 associated with ~x(/3) is simply 7rX, given by the Rieffel induction process. To 
go in the opposite direction, one makes the conjugate space L into a right-`4-module 
and left-/3-module by conjugating the respective actions on L, and induces using L and 
the ,4-rigging map .a(', ")- This conjugation is analogous to the step in the proof of the 
symplectic imprimitivity theorem where one passes from S to S-. 

More generally, there is a striking formal correspondence between (quantum) im- 
primitivity bimodules and classical equivalence bimodules (cf. Definition 4). As already 
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mentioned, the rigging map corresponds to the moment map, and the compatibility con- 
dition iii) (which implies that the actions of ,4 and /3 on L commute [ 13, XI.6.2] ) 

replaces the symplectic assumption that J~ C ~ ( P l  ) Poisson commutes with J~ C°°(P2). 
Assumption ii) is the quantum analogue of the part of the definition of a full dual pair 
which states that Jl and J2 are surjective. The symplectic assumption that the leaf spaces 
of the foliations defined by the fibers of J1 and J2 are manifolds has its analogue in 
a condition which we omitted in order to state the imprimitivity theorem in its fullest 
generality; we could add 

iv) the .4- and/3-rigging maps are positive 

(that is, (~b,~)B >_ 0 in /3 and .4(~,~) _> 0 in .4 for all ~ E L); if this condition is 
added the imprimitivity theorem evidently states that there is a bijective correspondence 
between all representations of .4 and/3. Conversely, the imprimitivity theorem following 
from i)-ii i)  alone is analogous to the weakened version of Theorem 5 stated following 
its proof. 

If only a right /3-module L is given, together with a positive rigging map whose 
image is dense in/3, one can always find a C*-algebra .4 acting on L so that L becomes 
an .4 - / 3  imprimitivity bimodule [43,13]. This algebra .4 (called the imprimitivity 
algebra of (L,/3) ) is generated by operators of the form T(~,,,), whose action on s r E L 
is defined by T(¢,.,)~" = tpGp, ~')t~. Similarly, given a Poisson manifold P1 which is one 
half of a full dual pair with equivalence bimodule S, one can find the manifold P2 
completing the dual pair by taking the Poisson commutant of J*C°°(PI) in C°°(S),  

which is necessarily of the form J~C°°(P2), at least in the finite-dimensional case. 
However, the imprimitivity algebra .4 only coincides with the commutant of /3  if L is 
finite-dimensional (in general it is not even a yon Neumann algebra). This dichotomy 
between the classical and the quantum settings will presumably disappear if one studies 
infinite-dimensional Poisson manifolds and their Morita equivalence. 

3.2. Quantum Marsden-Weinstein reduction 

We first apply the above framework to the quantization of the symplectic reduction 
procedure in its original version, where one reduces by a group action (cf. the Introduc- 
tion, and the paragraph following Proposition 3). Hence we assume that the classical 
data consisting of a symplectic manifold S, a strongly Hamiltonian (right) action of 
a Lie group H on S, a Poisson algebra A C C ~ ( S )  of functions which are invariant 
under the group action, and a co-adjoint orbit O c h*, have been quantized as a Hilbert 
space 7-¢, a unitary representation ~-(H) on ~ ,  a representation of a C*-algebra .4 on 7-(, 
which commutes with ¢r, and an irreducible unitary representation 7rx(H) on a Hilbert 
space 7-/x, respectively. (At no cost one may replace the co-adjoint orbit O and the irre- 
ducible representation 7r x by an arbitrary symplectic space with a strongly Hamiltonian 
H-action and an arbitrary unitary representation of H, respectively. Moreover, in what 
follows H does not need to be a Lie group; local compactness suffices.) Of course, the 
right H-action on S amounts to a Poisson morphism J* : C ~ ( h * )  - ~ C ~ ( S ) ,  and 
the representation ~-(H) on 7-/corresponds to an anti-representation (called ~r-) of the 
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group algebra C*(H) [40], defined by 

zr - ( f )  = f dh f(h)~r(h-l) ,  (3.6) 
o "  

H 

where dh is the Haar measure on H (assumed unimodular for notational simplicity), 
and f E Cc(H). Thus the C*-algebra C*(H), being the appropriate completion of the 
convolution algebra Cc(H) (playing the role of B of the preceding subsection), is to 
be seen as the quantization of the Poisson algebra C°°(h*),  a point of view first stated 
by Rieffel [46]. We remark that it has been proved that C*(H) is a strict deformation 
quantization [45] of C°°(h  *) for H nilpotent [46] or compact [23], and we expect it 
to be true for any amenable group. 

Let us first assume that H is compact, with Haar measure normalized to unity. We 
then take L = 7/, B = Co(H), and define the rigging map by 

(¢,~O)cc(n) : h ~ (zr(h)~,~b), (3.7) 

utilizing the inner product in 7-/. This is easily shown to satisfy all conditions stated in 
the previous subsection, and it is positive as well: 

Lemma 8. For H compact, (¢/,¢/)c~(n) >_ 0 as an element of C*(H) for all ¢/ E 7/. 

Proof. Let 1H denote the function on H which is identically equal to one. Then I~*IH = 
In  (where • is the convolution product on C(H)), so that 1H is a positive element 
of C*(H). Hence for any representation # ( H )  on ~ (with inner product ( . , . )~ )  

fndh  (¢r(h)~,¢7)~ = ( # ( l n ) ~ , ¢ ~ ) ~  > 0 for all ~ E ~ .  Now choose 7rl an arbitrary 
unitary representation of H on 7/1 (with inner product ( ' , ' )1 ) .  Using the previous 
argument with ¢r = zr ® 7rl and ~ = ¢t ®¢ti, we find that ('/'fl ( (~ ,  ~/)C~(H))~//I ,~/1 )1 ~-~ 0 
for all ~91 E 7/1. Since ~rl was arbitrary, this proves the lemma. [] 

Therefore, any unitary representation 7r x of H may be used to induce from. This is 
remarkable, for it implies that for compact Lie groups there is no quantum analogue of 
singular values of the moment map. Moreover, any C*-algebra contained in the com- 
mutant 7r(H) '  of zr(H) on 7-[ is represented by bounded operators in the representation 
zrX on the Hilbert space 7/x. This follows from 

Lemma 9. If A E 7r(H)' and H is compact then (AC/,AC/)cc(n) < IIAII 2 (¢/,¢/)a<H) in 
C*( H) for all ¢/ E 7/. 

Proof. Notation as in the proof of the previous lemma. That proof showed that the 
operator P = fH dh ~ ® ~'l (h) is positive on 7-/® 7-/1. Clearly, P commutes with A ® ]I 
if A E 7r(H) ~. Hence with ff = ¢/® ~1 and (., .)® the inner product in 7-[ ® 7/1, 

(PA ® ~ , A  ®I[~)® < Ilall 2 Ilel/ZC7112 = Ilall 2 ( e e l  ¢7)®. (3.8) 

If o~ denotes the state on C*(H) defined by ~Pl, then this inequality reads 
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w( (a~b,A~b)c~(~)) < IlAll2~o((C,,C,)cc(m), 
which proves the lemma. 

303 

[] 

Let us see what the trivially induced representation looks like. We take 7-/x = 
C,carrying the trivial representation of H, so that the space L®7-[ x used in the construc- 

tion is simply ~ .  Using (3.1) and (3.7), we find that (¢,~P)0 = ( P i d ~ , P i d ~ ) ,  where 
Pid is the orthogonal projector on the subspace 7-/id C 7-/ (which may be empty) of 
vectors which are invariant under H. The null space 7-(0 is the orthogonal complement 
of ~id, and the final induced space 7-/id = 7-//7-/0 is simply 7-/id , with the original inner 

product of 7-/. This space is invariant under 7r(H) t, so we find that *rX(A) on 7"~id is 
just the restriction of A to 7~id. Th i s  is, of course, nothing but Dirac's prescription [9] 

for first-class constraints (it goes without saying that the above procedure quantizes the 

Marsden-Weinstein reduced space at zero, so that all the classical constraints are indeed 
first-class). 

The Dirac procedure breaks down if zero is not in the discrete spectrum of each of the 

constraints, a situation which may arise when H is non-compact. The Rieffel induction 
procedure can still be used in that case, the main problem being the identification of an 

appropriate subspace L C 7-/. This will have to be done case by case, cf. the example 
surrounding (3.9) below. There is no guarantee that a dense L may be found; if the 
trivial representation of H properly occurs in 7"[ one has to exclude its carrier space 

from L. 
In the following proposition, the assumption of unimodularity is only made for conve- 

nience (in the general case the rigging map and the convolution product would contain 
the modular function of H) .  

Proposition 10. Let H be locally compact and unimodular, and let L be such that (3. 7) 
defines a function in Cc(H) for all ~ ,~  c L. Then (., ")cc(m is a rigging map, which 
is positive if H is amenable. Whether or not H is amenable, every representation of 
H weakly contained in the regular one is L-positive (so that it may be used to induce 
from); this is true in particular if the representation is square-integrable. 

Proof The verification of properties ( i ) - ( i v )  of a rigging map (cf. previous subsec- 
tion) is trivial. As to the positivity, the proof of Lemma 8 clearly breaks down in the 
noncompact case, as the function 1H is not in Cc(H) (or, indeed, in C* ( H ) ) .  However, 
if H is amenable it has a family of subsets called {Uj}jEj in [16, 3.6] (where our H 
is called G). Here J is a directed index set, and the Uj eventually fill up H. Each Uj 
is measurable and has finite Haar measure Ix(Uj), and one has the following property. 
We define a family of functions gj C LI (H)  C C*(H)  by gj = (I . t (Uj)  ) - I / 2 x u  j (with 
XE the characteristic function of a Borel set E). Then limj gj • gy = 1H pointwise on 
H. Hence for any f C L I ( H )  one has by the bound gj .g~ <_ 1H and the Lebesgue 

dominated convergence theorem that limj fn  dh f ( h ) gj * g7 ( h ) = f t t  dh f ( h ). Clearly, 
each gj * g~ is a positive element of C* (H) .  (These results easily follow from [ 16, 
3.6], and are even given as the definition of amenability in [42, 11.3], specializing the 
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groupoids in this ref. to groups.) Using the notation and strategy of the proof of Lemma 
8, we now take f (h)  = (Tr ® ~ l ( h ) ~ , ~ ) ~ .  Then 

f dh f ( h ) g j ,  gg(h) = (Tr®~l(gj * g g ) ~ , ~ ) ~  _> 0 

H 

for all j .  Therefore, fHdhf(h)  >_ O. As in the proof of Lemma 8, we conclude that 

(~b,~Plcc(n) > 0 in C*(H). 
If H is not amenable, the family {Uj}j~j with the desired properties does not exist. 

However, in that case (¢,~P)cc(H) is a positive element of the reduced group alge- 
bra C*(H) by an argument due to Rieffel [47] (in particular his calculation (1.1), 
specialized to A = C). The proposition follows (the last claim is a consequence of 
the well-known fact that square-integrable representations are properly contained in the 
regular representation). [] 

Proposition 11. In Lemma 9 above one may replace 'compact' by 'amenable'. 

Proof This can be proved in a similar way as Lemma 9, replacing the operator P 

by Pj = fn dh 7r ® ~'l (h)g i * g~(h), which is well-defined since gj * g~ has compact 
support. One then obtains (3.8) with P replaced by Pj, and taking the limit in j yields 
the proposition. [] 

This proposition cannot be further improved, in the sense that for nonamenable groups 

H functions of the type (3.7) exist, for which 1rid ((~, ~b)c c ~H)) (where ~'id is the trivial 
representation of H) is strictly negative. This follows from Rieffel's argument on p. 
146 of [47], which shows that a function g of postitive type on H exists, for which 
fH dh g(h)  < 0. But by the well-known characterization of functions of positive type on 
locally compact groups [40], such a g is necessarily of the form g(h) = (~(h)~b,~O) 
for some unitary representation 7r of H on ~ ,  and ~p E 9-/. (Rieffel assumed H to 
be discrete for simplicity, but his argument is easily extended to the general case by 
replacing his delta-function t~ e by an approximate unit of C* (H)  which lies in Cc(H).) 

Assuming, instead, that we are in the regular case (that is, 7rx(H) is L-positive), 
we are now in a position to illustrate (3.4) and (3.5). Namely, let a Lie group H 
act continuously on a manifold M; the pull-back action on T*M is then automatically 
strongly Hamiltonian [ 1 ] with moment map J. For any realization p : Sp ~ h* one 
may define the induced space (T*M)P constructed in Subsection 2.1. In the special 
case where O is a co-adjoint orbit in h* we thus obtain the Marsden-Weinstein reduced 
space J-I(O)/H.  To guarantee that this is a manifold, it suffices to assume that the 
action of H on M is proper (e.g., [ 1, p. 264], or [47] ), and that any point in t0 is a 
regular value of J. 

The quantization of this setting is to take 7-[ = L2(M) (the Mackey Hilbert space 
of a manifold [ 1 ] ), carrying the obvious unitary representation 7r(H) derived from the 
(right) action of H on M. For simplicity, we assume that M has an H-invariant measure 
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( i f  not, one works with half-densities on M), so that ~ = L2(M,~,). Tentatively 

choosing L = Cc(M), the rigging map (3.7) is then simply given by 

: h ---*/d~,(m) ~o(mh)~k(m); (3.9) 

M 

however, this is guaranteed to indeed take values in Cc(H) only if the H action on M 

is continuous and proper, thus providing a nice analogy with the classical situation. We 

now pick an L-positive representation ¢r x of H, defined on a Hilbert space 7-/x (as we 

saw above, for H amenable any representation will do). I f  O ® u C Cc(M) ® 7-( x then 
the image U(~p ® v) in £ ( L ,  7-/x) may be identified with the 7-/x-valued function ~p,, on 
M defined by 

~b~;(m) =/dh~k(mh)qrx(h)v  (3.10) 

H 

(cf. Thm. 5.12 in [43] for the special case M = G a group with H C G a subgroup). 
This function satisfies the equivariance condition Cv (mh) = 1r x ( h-  1 ) ~9 (m) for all rn E 

M and h C H, and the inner product in ~ x  of two such functions is given by (3.5). 

This may be rewritten in terms of a so-called approximate cross-section of M/H in M, 
that is, a continuous positive function b on M whose support S is such that S A KH is 

compact for any compact K C M (here KH = {Kh [ h E H}),  and fHdhb(mh) = 1 for 
all m E M. Such a function is shown to exist in Lemma 1.2 of [38]; for M = G, b is 

the Bruhat approximate cross-section used in Theorem 4.4 in [43]. A short computation 

then shows that the inner product in ~ x  is given by 

(~bo, q~w) = f du(m)b(m) (~9v(m), ~Ow(m) )x, (3.1 1 ) 

M 

where, as before, (., ")x is the inner product in 7-/x. Alternatively, this may be written as 

an integral over M/H in terms of a suitable measure on that space, for (~p~ (m),  ~Ow(m) )x 
= ( ~  (mh) ,  ~Ow(mh) )x on account of the equivariance condition stated above. This leads 
to the generalized induced representations of Moscovici [38] (which were already 

mentioned in [43] as a special case of the Rieffel induction process). In conclusion, 
the space 7-Ix consists of H-equivariant functions ~ on M with values in 7-/x, such that 

m --+ (q~(m),v) x is measurable for each v E 7-/x, and ( ~ , ~ )  defined by (3.11) is 
finite. Operators A on L2(M) commuting with 7r(H) are then naturally defined on ~ x  

also, that is, the desired induced representation is defined by ~rX (A)tpo = (A~b)o. Hence 

we have shown how the Moscovici construction follows from (3.4) and (3.5), and it 
has been made clear of which symplectic situation it is the quantization. 

If  we take M = G and H a closed subgroup of G, acting on the latter from the right, 
we find that the rigging map (3.7), defined on L = Cc(G), is just the convolution (over 
G) ~b • q~, restricted to H. The right-action (3.6) is just zr- ( f )~ ,  = ~b • f (convolution 
over H) .  Hence this rigging map and right-action, which were directly defined by Rieffel 
[43] in the form just given, are specializations of the general formulae (3.6), (3.7). 



306 N.P. Landsman/Journal of Geometry and Physics 15 (1995) 285-319 

As detailed in [43,13], the Rieffel induction procedure applied to this special case is 
equivalent to Mackey's formalism of induced group representations [30,50]. Note, that 
in this case the rigging map is positive even if H is not amenable (a fact [43] not 
covered by our Proposition 10). 

3.3. Quantization of symplectic group actions which are not strongly Hamiltonian 

What happens when the moment map J : S ~ ( h * ) -  is not equivariant with respect 
to the co-adjoint representation ¢rco? (In the literature, one finds the notation Ad~_, 
for our ~co(h).)  Equivalently, the pull-back J* : Coo(h*)-  ~ C°°(S) fails to be 

a Poisson morphism with respect to the Lie-Poisson structure on h* in that case. 
It is well known how to handle this situation in the classical case [1,17]. The Lie 
group H, assumed to act on S from the right, preserving the symplectic form and 
admitting a moment map, also acts on Coo(S) ® h* by a left-action c~ defined on 

f E Coo(S) ® h* as follows: ( O t h f ) ( s )  = Zrco(h)f(sh). The infinitesimal action da  
of X E h is then d a x f  = (X +dzrco(X)) f ,  where X is the vector field on S defined 
by ( J~f ) ( s )  = d/dt  f(sexp(tX))It=o. Subsequently, define an element 2 E h* ® h* by 
2(X,  Y) = ( (daxJ ) ( s ) ,  Y), which is independent of s E S (assuming S connected). 
Moreover, 2 turns out to be antisymmetric, and defines a 2-cocycle on h. Hence one 
may define a new Poisson bracket {., .}z on C°¢(h *) by putting 

{~,~,}z = [X,Y] + 2?(X,Y)lh.; (3.12) 

here ~" E C°°(h  *) is defined by X(0) = (O,X) (giving the Poisson bracket on such 
functions determines it completely), and lb. is the function which is identically 1 on 
h*. Then J is a Poisson map with respect to this modified Poisson structure of h*, and 
in addition is equivariant relative to the originally given H-action on S, and the new 
H-action ~'ffo on h* defined by 

Trio( h)O = ¢rco(h) (O + J(s)  ) - J(sh-~),  (3.13) 

which is independent of s. Clearly, if J was ¢reo-equivariant (that is, ahJ = J for all 
h E H) then 2 = 0, and (3.12) reduces to the Lie-Poisson bracket. 

The essential point is that the Poisson structure on Coo(h*), originally defined by 
the Lie bracket on h, is modified by a certain central extension ~ of h; the moment 
map remains the same. Also, the Marsden-Weinstein reduction with respect to a point 
/x E h* of S is practically unmodified (cf. exercise 2.4.3D in [ 1 ] ), and is a special case 
of the general procedure described in Subsection 2.1, taking Sp to be the symplectic leaf 
of h* containing ~ (relative to the 2~-Poisson bracket), or equivalently, the orbit o f / z  
under the H-action (3.13). 

This remark suggests how the situation should be quantized. Firstly, the quantum 
analogue of a symplectic group action which is not strongly Hamiltonian is a projective 
unitary representation on a Hilbert space 7-f, for by Wigner's theorem [50] that is the 
most general structure which quotients to a group action on the state space of 7-[ (i.e., 
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the corresponding projective space), preserving the symplectic structure of the latter 
(defined by the inner product on ~ [ 1,49,24] ). Thus we assume that for each h C H 
we are given a unitary operator ~r(h) on 7-/, such that ~r(hl )~'(h2) = c(hl, h2)~r(hlh2), 
where Ic(hl,h2)l = 1 and the identity c(hl,hl)c(hlh2,h3) = c(hl,h2h3)c(h2, h3) is 
satisfied (this is the equation one obtains by demanding associativity of the ~ ' (h)) .  We 

say that 7r has multiplier c [50]. If this is seen as the quantization of the H-action on S, 
one expects that the infinitesimal version of c, that is, the 2-cocycle on h derived from it, 
coincides with - X .  Conversely, starting from -2~ one may attempt to find a 2-cocycle 
c on H satisfying this property, which is always possible if H is simply connected (in 
general, a certain quantization condition must be satisfied by ,~ [49] ). 

We recall the definition of the twisted group algebra C*(H,c) of H, which has a 
product (see below for the initial domain of definition of (3.14)-(3.16))  

( f  *c g)(h) = f dk f ( hk - l )g ( k ) c (hk  -l ,  k), 

H 

(3.14) 

and involution 

(f*c)(h) = c(h, h -1) f (h -1) .  (3.15) 

The quantum analogue of C°°(h*) equipped with the Poisson bracket (3.12) is the 
twisted group algebra C* (H, ?). We obtain a right-representation 7r- of C* (H, ?) by 

7r- ( f )  = f dh f(h)-6(h, h -1 )Tr(h-l), (3.16) 
H 

where 7r has multiplier c, as above. There are some subtle differences with the untwisted 
case. Firstly, there one can find both a representation of C*(H) on 7-( (obtained by 
replacing h -1 in (3.6) by h), and a right-representation, given by (3.6). In the twisted 
case, one obtains a representation of C*(H,c) (rather than C*(H,~) )  by omitting 

and changing h -1  to h in (3.16). This is just as well, as we will see in Proposition 12 
below. Secondly, the multiplier is not necessarily continuous (cf. [50,49] for conditions 
when it is), so that Co(H) is not closed under multiplication and taking the adjoint. 
Hence we largely follow Rieffel (Example 4.21 of [43]) ,  who took/3 to be K(H,-~), 
the collection of bounded measurable functions of compact support on H, but we exploit 
the fact that H is a Lie group, and add the condition that elements of /3  are continuous 
in a neighbourhood of the identity. Then (3.14)-(3.16))  may be defined on /3, and 
extended by continuity to the whole twisted group algebra. 

We can then define the rigging map by (3.7), as in the untwisted case, and (repeatedly 
using the cocycle identity on c) easily check it satisfies all conditions (assuming that 
an appropriate subspace L can be found). Moreover: 

Proposition 12. Let the locally comapct group H be amenable. Then the rigging map 
(3. 7) is positive (i.e., (~, O)K(H2) --> 0 in C* (H, -6)). 
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Proof Also in the twisted case there exists a one-to-one correspondence between rep- 
resentations crl of C*(H,'6) on a Hilbert space ~1 and projective unitary represen- 
tations (called 7rl as well) of H with multiplier ~ [ 15,39]; the correspondence is 
7rl ( f )  = fn dh f (h)~rl (h) ,  as in the untwisted case. Hence it is sufficient to prove that 
(Trl((~O,O)r~ni))¢l ,~l) l  >_ 0 for all ~O 6 L and ~01 E ~ l .  As we remarked above, 7r 
is a representation of H with multiplier c, whereas 1rl has multiplier ~. Hence 7r ® ~rl is 
a representation of H and C* (H) ,  without any multiplier. Therefore, the argument used 
to prove Lemma 8 and Proposition 10 applies. Taking the compact case for simplicity, 
we can write 

('B'l (<¢, ~/I)K(Hi))~//1, ,/#l )l = (77"® '//'l ( lh*)¢  ®~Ol, ¢ ® ~//1) --> O, 

now regarding ~ ®~bl as a representation of C* (H) ,  in which lh* is a positive element. 
The noncompact case is handled exactly as in the proof of Proposition 10. [] 

It is interesting to exhibit Rieffel's treatment of induced projective representations 
[43] as (almost) a special case of the above (cf. the discussion closing the previous 
subsection). Namely, assume that H C G is a closed subgroup, with a multiplier c 
given, whose restriction to H is what we called c before. Now take 7-[ = L2(G) 
with L = Cc(G) as the dense subspace on which the rigging map is defined. Then 
(Tr(h)~O) (x) = c(x, h)~O(xh) defines a projective unitary representation of H on 7-[ 
with multiplier c. Then (3.16) specializes to ¢ r - ( f ) f f  = ~9 "7 f (convolution over H) ,  
whereas the rigging map (3.7) becomes (~b, ~o)ic~n,~) = ~b *c *~-q~ (convolution over G). 
By associativity of .~-, the condition (~0, 7r- (f)q~)mn, c-3 = (~b, ~o)r~/4,~)) *~-f is manifestly 
satisfied. Rieffel's right action of C*(H,-~) is the one given above, while his rigging 
map is obtained by putting (¢, ~o)r~l,~) = ¢*r "7 ~o, which is positive even if H is not 
amenable (although not manifestly so, despite appearances, for the convolution product 
is in C*(G,-~) rather than C*(H,-~)). 

For completeness, we mention another approach to handle the situation studied above; 
this is based on the result in [35] that symplectic leaves in h* with respect to the Pois- 
son structure (3.12) are symplectomorphic to ordinary co-adjoint orbits of the so-called 
splitting group H of H; this is a group whose unitary representations include all projec- 
tive representations of H. Hence Marsden-Weinstein reduction in the situation studied 
in this subsection can be replaced by ordinary reduction with respect to H. Quanti- 
zation then proceeds as explained in the preceding subsection, featuring the ordinary 
(untwisted) group algebra of H. Of course, in this elegant approach one faces the prob- 
lem of having to find H as well as the particular co-adjoint orbit corresponding to the 
cocycle 2 in (3.12), and subsequently the particular unitary representation of H that 
quotients to the projective representation. 

3.4. Induction with groupoid algebras 

So far, the general formalism to quantize constrained systems has only been illustrated 
for the case that the Poisson algebra of the constraints is essentially a Lie algebra, 
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perhaps with central extension. In other words, we took the Poisson algebra C °~ (P)  

to be C°~(h*),  where h is a Lie algebra; the quantization involved the group algebra 

C*(H) (perhaps twisted). A much more general situation that we are able to handle, 
in the sense that an explicit formula for the rigging map can be given, arises when 
we merely assume that h is a Lie algebroid E ( F )  of a Lie groupoid F [8], and 

C°~'(P) = C ~ ( E ( F )  *) the Poisson algebra canonically associated to E(F) [8]. For 
we know [23] that the quantization of the Poisson algebra C ~ (E(F)*) is the groupoid 

C*-algebra C* (F ) .  (Cf. [42] for information on groupoid C*-algebras; in the present 
case, C*(F) is canonically defined without reference to a left Haar system, since F 

is a manifold and one may use half-densities rather than functions as elements of the 

algebra. Alternatively, the same algebra may be defined with respect to a left Haar 

system, each of whose measures is equivalent to the Lebesgue measure in any local 
co-ordinate system on the relevant fiber, which is a manifold. For convenience we will 

choose the latter option.) The quantization of C ~ ( h  *) by C*(H) is a special case 
of the groupoid situation, as is the quantization of C~(T*M) by the C*-algebra of 

compact operators on L2(M), with a strict deformation quantization of Weyi type given 
in [23]. 

We use the following notation: the base space of F is called B, the source and target 

projections are s and t, respectively, and the left Haar system consists of measures /Xb 

on t - I  (b),  b E B. The convolution product on C*(F) is given (firstly on Cc(F)) by 

f * g(x) = / dtxs(x)(y) f ( xy )g(y -1) ,  (3.17) 

t--I (8(X)) 

and the involution is 

f*(x)  = f ( x - l ) .  (3.18) 

We assume that a right-representation 7r- of C* (F )  on a Hilbert space ~ is given. By 
a theorem of Renault [42, II. 1.21 ], this representation corresponds to a representation ~r 
of F itself on ~ (to apply this theorem, we need to assume that F is 2nd countable; the 

other assumptions stated in [42] are automatically satisfied for Lie groupoids). Thus 
there is a measure u on B, and a Hilbert space ~ b  for (u-almost) every b E B, so 
that ~ = f ~  du(b)7-(b. The representative ~-(x) of x E F is then a unitary map from 
~s(x) to ~t(x); note that 7r(x) is not defined as an operator on ~ .  Assuming that F 

with given left Haar system is unimodular in the sense of [42, 1.3] (this assumption is 
satisfied in all examples [23,24] ), the right-representation or- is given on f E Cc(F) 
by 

( ~ - ( f ) ~ b ) ( b )  = / dizb(y ) f (y -1 )~(y )~(s (y ) ) .  (3.19) 

t - I  (b) 

Using (3.17) and the left-invariance of the Haar system (which means that tZs(x)(E) = 
tXt(x)(xE) for each Borel set E C t -l  o s(x) ) it indeed follows that ~r-( f )rr-(g)  = 
7 -  (g * f ) .  We now define the rigging map on an appropriate subspace L c 7-( by 
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(~',~)cc~r) : x ~ ( T r ( x ) ~ ( s ( x )  ) , ¢ ( t ( x )  ) ),~x), (3.20) 

where the inner product on the right-hand side is the one in ~t{x). Clearly, the rigging 
map (3.7) is a special case of (3.20). By L being 'appropriate' we simply mean that 
it be chosen such that the rigging map indeed takes values in Cc(F) ;  as in the group 
case, one may not be able to find a dense L. Checking the properties ( i ) - ( iv )  stated 
at the beginning of Subsection 3.1 is an easy matter, given (3.17)-(3.20);  one only 
needs the properties ~(x )Tr (y )  = ~ ( x y ) ,  s ( xy )  = s ( y ) ,  t ( xy )  = t (x ) ,  and s ( x  -1) = 

t ( x ) ,  t ( x  -1 ) = s (x ) .  Of course, the algebra .4 should be contained in the commutant 
of ~r-(C* ( / ' ) ) .  

Proposition 13. The rigging map (3.20) is positive i f  F is amenable. 

Proof The notion of amenability of a groupoid is defined in [42, II.3]. We can simply 
copy the proof of Proposition 10, the functions gj being given by the functions f i  of 
Definition 11.3.1 of [42]. [] 

4. Some examples 

4.1. Co-adjoint orbits and unitary representations of  semidirect products 

An important special case of symplectic reduction arises when one reduces T*G with 
respect to the right-action of a subgroup H C G; as we mentioned in the Introduction, 
it was already pointed out in [20,17,54] that this reduction is the classical analogue 
of Mackey's construction of induced group representations (which in itself is a special 
case of Rieffel induction, cf. [43,13], or the end of Subsection 3.2 above). As a 
neat illustration of the general analogy between symplectic reduction and Hilbert space 
induction, we will now spell out how the representation theory of regular semidirect 
product Lie groups of the type G = L D< V, with V abelian, may be seen in this light. By 
the Mackey theory [ 30,50], all unitary irreducible representations of G are induced from 
subgroups of the type H = S D< V, where S C L is the stability group of a point/~ E V* 
under the dual action of L. If ~r,~ is a unitary irreducible representations of S, one then 

. O 

induces from representations 1r{,~,p}o defined by 7r{~.~)(s,v) = exp (! ~ ,  v) ) 7r~ (s).  

The classical counterpart of this result of Wigner and Mackey would be that all co- 
adjoint orbits in g* are (symplectomorphic to) Marsden-Weinstein reduced spaces of 

O 

the form ( T ' G )  ° = J - l ( O ) / H ,  with H as above, (.9 - O{,~.~) = O,~ ~ p  a co-adjoint 

orbit in h* = s* @ V*, and O~, a co-adjoint orbit in s*. Here J - JR : T*G --~ ( h * ) -  is 
the moment map derived from the pull-back of the right-action of H on G, cf. Subsection 
2.3 (paragraph following Theorem 6), whose notation and results we will freely use 
below. We will now verify that this is indeed the case. 

Firstly, we need to check that O(,~,~} (which we again will simply call (_9 in what 

follows) as defined above is indeed a co-adjoint orbit of H; this follows from the explicit 
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action of a semidirect product group on its dual, given in [ 17, 1.19]. Secondly, we must 
demonstrate that the map j o  : (T.G)O __~ g,, which we already know to be symplectic 
and equivariant (intertwining the left-action of G on ( T ' G ) o  and the co-adjoint action 
on g*), is injective (so that (T 'G)  ° is symplectomorphic to its image under j o ) ,  and 
thirdly, it should follow that any orbit in g* is such an image for appropriately chosen 

O 

H and (o-,p).  
Using the left-trivialization of T'G, we have seen that j O ( [ x , p ] / 4 )  = xp; putting 

x = ( l , c )  E G, and p = (0,/~) E g*, where 0 E !* is such that 0 [ s lies in O,,, we 
find o o o (8,p)  ] n) lO + lp. Here the right-hand side was calculated using the JL ([ ( / ,v ) ,  = 
formula for the co-adjoint action of G given in [ 17, I. 19], and (following this reference) 
we have written the co-adjoint action of l on 0 simply as 10, and the dual action of l 
on/~ C V* as I/~. Now use the fact that the right-action p of (s ,w) E H = S D< V on the 

O 

point ( ( / , v ) ,  (O,p)) C T*G ~- G × ~* is given by 
O O 

P{s,w} ( (l, v), (O,p) ) = ( ( I s  - l  , V -- l s - lw) ,  (sO,p)) 

to conclude that the map j o  is indeed well-defined and injective on the quotient of 
j - 1  ( 0 )  C T*G by H. Finally, the fact that any co-adjoint orbit in g* is obtained in this 
way follows from the classification of these orbits in [ 17, 1.19]. 

This result is closely related to a theorem in [33], which states that each co-adjoint 
orbit in g* is symplectomorphic to a symplectic leaf in (T*L) /S  for suitable S, which 
S is exactly what we used above. In addition, we mention the work of Rawnsley 
[41], who related the Wigner-Mackey representation theory of sernidirect products to 
the geometric quantization of certain of their co-adjoint orbits. This is quite different in 
spirit from our approach, which in this situation does not use any explicit correspondence 
between co-adjoint orbits and irreducible unitary representations (let alone geometric 
quantization), but rather emphasizes the fact that both are obtained by an induction 
procedure, which even employs the same class of subgroups H in the classical and the 
quantum case. Moreover, even leaving quantum representation theory aside, the results 
of this subsection and the next, taken together with Corollary 7, considerably simplify 
the study of of actions of semidirect product or nilpotent Lie groups on symplectic 

manifolds. 

4.2. Co-adjoint orbits and unitary representations of nilpotent Lie groups 

A similar result holds when G is nilpotent. Assuming G to be connected and simply 
connected for simplicity, the Dixmier-Kirillov theory [7] establishes a bijective corre- 
spondence between the co-adjoint orbits of G and its irreducible unitary representations. 
For us, the main point is that all unitary representations are obtained by Mackey induc- 
tion from certain subgroups H, and this inspires us to demonstrate that all co-adjoint 
orbits of G are Marsden-Weinstein reduced spaces induced by the same H's. 

• O 

Pick a point p C g*, and take Go C G the stability group of/~ under the co-adjoint 
action• The essential implication of the nilpotence of G is the existence of a so-called 
polarizing subalgebra h, where go C h C_ g, and (/~, [X,Y]) = 0 for all X,Y in h. With 



312 N.P. Landsman/Journal of Geometry and Physics 15 (1995) 285-319 

H = exph, one then induces from the representation ~rop (H)  given by ~r~(exp(X)) = 
• O 

exp(t(p, X)). Representations thus obtained are unitarily equivalent iff the various/~ 
one starts from lie in the same orbit, and all irreducible unitary representations of G are 
obtained in this way. 

To find the classical analogues of these statements, we first notice that h being 
o =/~ h* polarizing relative to/~ simply means that Pr - -  I h E is stable under the co-adjoint 

o 

action of H. Hence Pr is a co-adjoint orbit in h*, and we are done if we can show 
1 o 

that Gp ~_ J -  ( p r ) / H  as symplectic spaces (here J ___ JR : T*G ~ (h*) , as in the 
previous subsection). This is indeed the case• 

o 

First, note that j - l  (Pr) = G x (H/~) (in the left-trivialization of T*G ~ G × g*). 

To prove this, observe that the set 27= {p E g* ] p r h =/~r} C g* is a copy of 
•n in g*, with n = dim g - d i m h .  On the other hand, H, being connected, simply 
connected, and nilpotent, acts unipotently on g*, so that by [ 7, Cor. 3.1.5] the orbit 
H/~ is homeomorphic to IR', with m = dim H - dim Go. But H is a polarizing subgroup 
of G, hence n = m by [7, Thm. 1.3.3]• Secondly, if p = h/~ for some h E H then 

P r h =/~ r h =/~r, since the map p ~ p r h intertwines the co-adjoint action of H on 

g* with its action on h*. Hence G × (H/~) C j - l  (/~r)" The claim follows• 
o 

As H/~ = H/Go, we have j - I  ( p~ ) /H  = (G x (H/Go) ) /H ,  with the right H-action 
p defining the quotient given by ph(x ,p )  = (xh, h - l p ) .  Hence (G x ( H / G o ) ) / H  ~- 

G/Go = G~, and this is a symplectomorphism implemented by the map J °  L : j -1  ( o ) / n  
o , o 

g* (cf. the previous subsection), with (.9 = Pr" Since p, and hence the co-adjoint orbit 

G/~, was arbitrary, we have indeed established that any co-adjoint orbit in a connected 
and simply connected nilpotent Lie group is obtained by Marsden-Weinstein reduction 
from a polarizing subgroup and a zero-dimensional orbit• This establishes a perfect 
correspondence between classical and quantum induction in this case• 

4.3. The generalized Yang-Mills construction 

Let (P,  H, Q, pr ~) be a principal fiber bundle with connected compact gauge group 
H and projection pr r : P --~ Q = P/H; we assume P connected as well. Then H 
acts from the fight on T*P by pull-back with moment map J, and we have a full 

dual pair ( T * P ) / H  P~- T*P -~J (h* ) - ,  where pr is the canonical projection onto the 
given quotient space [53]. With extra assumptions on simple connectedness, one even 
obtains a classical equivalence bimodule, so that h* and ( T ' P ) / H  are Morita equivalent 
Poisson manifolds with T*P as their equivalence bimodule, cf. [57] or Definition 4 in 
Subsection 2.1 above• However, by the argument in [53, Section 8], there is a bijective 
correspondence between the symplectic leaves in ( T * P ) / H  and h*, which is given 
explicitly in [17,31]. There it is shown that the leaves of ( T * P ) / H  are fiber bundles 
over T*Q with a co-adjoint orbit in h* as fiber• This suggests that ( T * P ) / H  and h* are 
Morita-equivalent without any further assumption; their equivalence bimodule may be 
different from T*P in general. 
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In any case, the essential point is that pr*C~((T*P)/H)  Poisson commutes with 
J * C ~ ( h  *) in C ~ ( T * P ) ,  so that, starting from any given realization p : Sp -~ h*, we 
obtain an induced representation qrP:C~((T*P)/H)  ~ C ~ ( S  p) by the construction 
in Subsection 2.1 (or, equivalently, we find a Poisson map JP : S p ~ (T*P)/H for 
each such p).  If we take Sp to be a co-adjoint orbit in h* then S p is a symplectic leaf of 
(T*P)/H, which plays the role of the phase space of a particle in a Yang-Mills field, 
as originally observed by Sternberg (cf. [52,17,3l] for a comprehensive discussion), 
whence the name 'Yang-Mills construction'. Inducing from an arbitrary realization Sp 
leads to the 'generalized Yang-Mills construction' [54,58]. 

The Yang-Mills construction was quantized in [23], where we exploited the fact 
that C~( (T*P) /H)  is the Poisson algebra canonically associated to the Lie algebroid 
(TP) /H [8]. Here we wish to briefly give a general construction based on Rieffel 
induction. Namely, the quantum analogue of the full dual pair mentioned above is 
the imprimitivity bimodule K2(L2(p)) H --~ L2(P) +-- C*(H), which involves the H- 

invariant compact operators on L2(p).  To see this, one may start from the right-action 
7"r- of Cc(H) C C*(H) on Cc(P) C L2(P),  provided (via (3.6)) by the unitary rep- 
resentation 7"r of H on L2(p) ,  which comes from the right-action defining the principal 
bundle. For simplicity, we put an H-invariant measure /.~ on P (always possible, as H 
is compact), which defines L2(P).  Then (w(h)4 , ) (x)  = ~p(xh). 

The rigging map into C*(H) is given by (3.7), and is positive by Lemma 8. Using 

the fact that the C*-norm Ilfll of f E C¢(H) is dominated by its Ll-norm, as well as the 

Cauchy-Schwartz inequality and fn dh = 1, one finds that II (~', ~)Cc(H)II -< 11~1121t÷112, 
so that one can extend (3.7) by continuity to a rigging map defined on 7-( with values 
in C* (H) .  Note that, since H acts freely on P, we can choose a (discontinuous) cross- 
section s : Q ~ P, which leads to a natural isomorphism L2(P) _~ L2(Q) ® L2(H),  

where 7"r(H) acts trivially on the first factor and via the right-regular representation on 
the second one. Since the rigging map then amounts to convolution over H (times an 
inner product in L2(Q)) ,  this implies that the image of the rigging map defined on 

Cc(P) is dense in Cc(H), hence in C*(H). 
Now consider the imprimitivity algebra [43,13] (also cf. Subsection 3.1) ,,4 defined 

by 7-[ = L2(P),  /3 = C*(H), and the rigging map (3.7). ,.4 is generated by operators 
of the form Tto.¢), whose action on s r E L is defined by T(~0,~o)( = 7r-((~o,()c.~H))~P. 
Starting with 4,,~p,( E Cc(P),  and using (3.6), (3.7), we find that T(~0,¢) is Hilbert- 
Schmidt with kernel given by K~,.¢) (x, y) = fN dh ~l,(xh)q~(yh). From the property 
K(xh, yh) = K(x,y)  for all h E H and x,y E P we infer that T(j,,¢) commutes with all 
7r(h). Hence the C*-algebra generated by these operators is clearly .,4 = K2(L2(P))I-/. 
The .A-rigging map is defined by .a(¢, g') = T(~,,¢), and all relevant conditions are now 
automatically satisfied (cf. [43, Section 6])  for L2(p) to become a K~(L2(p)) H - 
C* (H)  imprimitivity bimodule. (Incidentally, this construction also shows how to handle 
the case where H is noncompact: in that case .,4 is no longer )U(L2(P)) ~, but it may 
simply be defined as the imprimitivity algebra defined by ~ ,  /3, and (3.7).) 

Physically, ..4 is the 'universal algebra of observables' of a particle in a Yang- 
Mills field with gauge group H [23], and is the quantum counterpart of the Poisson 



314 N.P. Landsman~Journal of Geometry and Physics 15 (1995) 285-319 

algebra C ° ° ( ( T ' P ) / H ,  which plays this role in classical mechanics [52]. By the Rieffel 
imprimitivity theorem [43 ] (also cf. Subsection 3.1 above) combined with the strong 
Morita equivalence between ,4 and/3 = C*(H)  established above, all its representations 
are induced by representations of C*(H) ,  hence by unitary representations of H. The 
explicit form of these induced representations is then given by the Moscovici induction 
technique discussed at the end of Subsection 3.2 above as a special case of the Rieffel 
process. Starting from a unitary representation 7rx(H) on a Hilbert space 7-/x, one 
finds that the Hilbert space 7~ x carrying the induced representation r2x(,4) is just the 
L2-closure of the space F x of smooth compactly supported cross-sections of the vector 
bundle P x n 7-ix associated to the principal bundle ( P, H, Q, pr').  This realization was 
previously found by different means [23] ; we note that the space F x is a useful domain 
of essential self-adjointness of various unbounded operators of physical relevance. 

4.4. The illusion of time 

The classical relativistic particle in Minkowski space-time is discussed in an elegant 
covariant symplectic formalism in [ 17]. As we failed to find a convincing quantization 
of this approach in the literature, we here discuss this system using Rieffel induction. 

The classical setup consists of the cotangent bundle S = T*I~ 4 and the group H = R, 
which acts on S by generating geodesic motion on the flat space-time R 4. If we write 
(x(~') ,p(7-)) for the result of the action of 7 E R on ( x , p )  E S, we thus have 

( x ~ ( r ) , p ~ ( r ) )  = (x ~z + p~7",pv), (4.1) 

where p~ = gg"p~, with guy the metric diag( 1 , - 1 , - 1 , - 1 ) .  If the symplectic form is 
taken to be dx ~/x dp~, this action corresponds to the moment map J : T*R 4 ---* h* = 
defined by J ( x , p )  = gg~pgp~/2. The observables on S are the functions f E C ~ ( S )  
which Poisson-commute with J, that is, satisfy p a a f / a x  ~' = o. We now reduce S with 
respect to the co-adjoint orbit Sp = {m2/2} E h*, and find that the reduced phase space 
S O consists of two disconnected copies, one with p0 > 0 and one with P0 < 0; the latter 
may consistently be ignored by imposing the additional constraint P0 > 0. Each copy 
consists of equivalence classes of points in S *R {m2/2} - {(x ,p )  E S I p2 = m2}, 
where points are in the same equivalence class iff they are connected by the flow 
(4.1). Therefore, a point in the physical (i.e., reduced) phase space, identified with a 
physical state of the relativistic particle, consists of an entire particle trajectory through 
space-time. 

Using the prescription proposed in this paper, it is completely straightforward to 
quantize this model. We take 7-[ = L2(R 4) (regarded as functions on space-time), 
which carries a representation of H = R given by ~r(~-)~b = exp(i~-V1)~p (with [] = 
guy O/ax ~ a/ax~). We define the rigging map (3.7) on L = CceC(~:~4), and induce from 
the irreducible unitary representation zrrn2 : ~" ~ exp(i~'m 2) on 7-[,n = C. With (3.1), 
we find that the form (-, ')0 of the Rieffel induction process is given by (note that 
L ® ~ x  = L in the present case) 



N.P. Landsman~Journal of Geometry and Physics 15 (1995) 285-319 315 

( ~ , q~ ) o = / d ~" eirm2 / d4 x ( eirIs] ~ ) ( x ) qb ( x ) 

R R 4 

= / (__~)38(pd4p 2 _ mZ)~t(p)-~(-p). (4.2) 

~4 

Hence the final representation space 7-/m2 consists of solutions O of the Klein-Gordon 

equation ([]  + m2)~l, = 0, with either positive or negative energy p0, whose Fourier 
transforms are square-integrable with respect to the measure d3p/po, which one finds 

by integrating the delta function in (4.2). Alternatively, one may follow the construction 
of ~ x  explained after (3.5), with X = m2, and arrive at the same result. The quantum 

observables are those bounded operators which commute with the multiplication operator 
p2. 

The interpretation of the quantum states is similar to the classical ones: each vec- 
tor in ~ m2 consists of a wave function on space-time. The propagation of states in 

time, familiar from non-relativistic mechanics, here has to be derived from external 

considerations. 

4.5. Finite W-algebras 

Inspired by developments in conformal field theory and integrable systems, the concept 
of a finite W-algebra was recently introduced [ 5 ]. This subject provides an illustration 

of Rieffel induction applied to an algebra of unbounded operators, and it appears to us 

that our quantization method applied here is simpler than the BRST and Lie algebra 

cohomology techniques used in [5]. 
The setting is a Lie group G with Lie subgroup H. In the context of W-algebras, 

G is semi-simple and H is nilpotent, but these assumptions hardly play a role in our 
discussion. H acts on g* by restriction of the co-adjoint representation. This action 

preserves the Lie-Poisson structure, and the corresponding generalized moment map j 
is simply given by j(O) = 0 [ h. Picking an orbit (_9 C h*, we can define the Poisson 
reduced space j - i  (O)/H [32], and the corresponding classical finite W-algebra is the 

space of real polynomials Wc (G, H, (_9) = pol~ [ j -  1 ( O ) / H ] ,  equipped with the reduced 

Poisson structure. 
To quantize, it is convenient to have an equivalent definition at hand. Recall [ 1] 

that G\T*G ~_ g*, so that CC~ (T'G) (the space of left G-invariant smooth functions 

on T'G) is Poisson-isomorphic to the Lie-Poisson algebra C ~ ( g * ) ,  whose subspace 
of polynomials pol~[g*] is well defined. The right H-action on T*G quotients to the 
co-adjoint action on g*. Hence the space CC°~(T*G)H may be restricted to the space 
A C C°~(T*G) of H-invariant polynomials on g*. A is a Poisson algebra which inherits 
the canonical Poisson bracket on T'G: since this bracket is left and right G-invariant, it 
can consistently be restricted to A. If  we now take S = T'G, Sp = (9 a co-adjoint orbit 
in h*, and p = io the injection of O in h*, we obtain an induced representation ~°(A)  
on the Marsden-Weinstein reduced space S ° = j - i  (O)/H, cf. Subsection 2.1 (we here 
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write 7r ° etc. for ~ o  ). As before, J : T*G ~ ( h * ) -  is the moment map coming from 
the right-action of H on T*G. It is easily seen that 7tO(A) -~ Wc(G, H, (.9) as Poisson 
algebras. 

In this formulation, quantization is a piece of cake. Firstly, the quantization of the 
Lie-Poisson algebra pol~[g*] is the operator algebra L/(g)sa, which consists of the 
symmetric elements of the universal enveloping algebra of g (hence the quantization 
of the complexified Poisson algebra polc[g*] i s /d (g )  itself). We here regard L/(g) 
as the Op*-algebra of left-invariant differential operators defined on the common dense 
domain Cc ~ (G) C L 2 (G) [ 48] (to be compared with polc [ g* ] being the left-invariant 
polynomials on T'G).  This quantization is just the infinitesimal and unbounded version 
of Rieffel's deformation quantization of C0(g*) by the group algebra C*(G) [46]. 

To see the connection between the two, we start by taking a smooth function f on g* 
whose Fourier transform f has compact support on g, Thus a function f may be defined 
for sufficiently small h on a neighbourhood of the identity of G, by f ( e x p ( - h X )  ) = 
h - n f ( X )  (with n = dimG). Then f becomes a smooth function on G by putting it 
equal to zero elsewhere. We then define the deformation quantization Qn( f )  as an 
operator on L2(G) by Qh( f )  = 7rR(f), where 7rR is the right-regular representation of 
G and C*(G) on L2(G) (hence ( Q n ( f ) ~ ) ( x )  = f ~ d y f ( y ) ~ ( x y )  for ~b ~ L2(G)) .  
If we restrict ~b to lie in C ~ ( G ) ,  then a short formal computation shows that this 
quantization may be extended to any f E polc[g*],  and that the final result is defined 
for arbitrary values of h. Explicitly, one finds that a monomial 8 1 . . .  81 E pol R [g*] 
(where, as before, 8 E g C C°°(g *) is defined by 8 ( 8 )  = (8,X)) is quantized 
by (-- ih) tA(X1. . .Xl)  E S(g ) .  Here A is symmetrization, and this quantization is 
identified with the corresponding element in the right-regular representation, as before. 

We now follow the Rieffel induction process with L = C ~ ( G ) ,  ,A = L/(g) H (con- 

sisting of invariants under the adjoint action of H) ,  and B = Cc~(H). .A acts on L 
as indicated above, and/3 acts on L by 7r-(f)~b = ~# • f (convolution over H).  We 
now exploit the fact that H is nilpotent, which implies that there is an irreducible uni- 
tary representation ~'o on a Hilbert space ~ o  defined by the orbit (.9 [7] (if  H is 
not simply connected, this holds provided that the orbit satisfies a suitable integrality 
condition). The quantum W-algebra Wq(G, H, (9) is then simply the induced represen- 
tation 7rq~ (,A), which is an algebra of unbounded operators acting on the dense domain 
D = Cc~(G)~7-(o C 7-/° (see (3.2), with X = (.9). Explicitly, ~ o  is of course just the 
representation space obtained by inducing ~ro (H)  to ~r°(G) by the Mackey procedure. 

In the Blattner realization ~ o  of H-equivariant functions ~ : G ~ 7-/o (that 
is, ~(xh)  = ~ro (h - l~ (x ) )  for which ( ~ , ~ ) o  (inner product in 7-(o) is square- 
integrable on G/H, the corresponding domain /3 consists of those functions in 7~ ° 
which are smooth and the projection of whose support on G onto G/H is compact. 
Note, that d ~ ° ( L / ( g ) )  acts on ~ E ~ o  by hitting the argument of ~ from the left 
(e.g., d # ° ( X ) ~ ( x )  = d/dt~(exp(tX)x)lt_--o for X E g), which trivially preserves 

- 0  maps L/(g) H into differential operators hitting this H-equivariance of ~, whereas ~q 
argument from the right. This still preserves the equivariance on account of the H- 
invariance of elements of ,,4. 
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4.6. Reduction by a groupoid algebra 

317 

Our final example probably provides the simplest illustration of the use of groupoids 

in constrained systems. The classical system has S = T*R m, and the aim is to eliminate 
one degree of freedom. This may be done by imposing the single constraint pl = 0, and 
reduce with respect to the corresponding action of H = • on S. However, it is more 
instructive to start from a Poisson map J : T*R m ---+ (T*~) - .  The observables have 

to commute with the constraints J*C ~ (T*R), and are just the functions which do not 
depend on xl ,p l .  With Sp = T*R and p the identity map, the reduction procedure of  

Subsection 2.1 then painlessly leads to the reduced phase space S = T*~  m-I, with the 

obvious action of the observables. 
Since C ~ (T*R n) is the Poisson algebra defined by the Lie algebroid TR n, its quan- 

tization is the groupoid algebra C*(~  n × ~n) = KZ(L2(IRn)) [23] (also cf. Subsection 

3.4 above). Therefore, taking n = m, the quantization of the unconstrained system is 
given by the defining representation of K~(L2(R m) ) on 7-/ = L2(Rm), and the quantum 

algebra of the constraints is (put n = 1) /C(L2(R)).  To use the procedure of Sub- 
section 3.4, we identify 7-( as the direct integral f : dxT- [ ( x )  = L2(~)  ® L2(]1~m-I), 

with ~ ( x )  = L2(~ " - l  ). It is convenient to work with suitable dense subspaces, so we 
take L = Cc(Rm), .,4 = ]I ® Ec(L2(Rm-I)) ,  and /3 = ]Cc(L2(R)). Here ~c(L2(Rn))  

consists of the Hilbert-Schmidt operators whose kernel is in C¢(]R n, ]Rn). If  we identify 

a Hilbert-Schmidt operator f with its kernel, then the representation (3.19) reads 

(Tr- ( f ) ¢ )  (x I . . . . .  x m) = [ dx f ( x ,  x 1 )¢ (x ,  x 2 . . . . .  xm). (4.3) 

R 

The rigging map (3.20) is 

(~,~p)B : ( x ,y )  ~ [ dx2" "'dxm ~°(y'x2 . . . . .  x'n)~k(x'x2 . . . . .  xm)" (4.4) 

Rn,- 1 

We now induce from the identity representation ~rid of /3 on 7-/id = L2(~) .  The space 
L ® ~id may be identified with a space of functions in m + 1 variables, so that the form 

(3.1) becomes 

( ~ , ~ ) 0  = f d x ° . . . d x m ~ ( x ° , x O , x  2 . . . . .  xm)~5(x1 ,x l , x  2 . . . . .  xm). (4.5) 

~m+ 1 

In particular, (gt, ~ ) 0  = f d x  2..  " d x m l f d x l g ( x , x , x  2 . . . . .  xm)l 2, SO that (., ")0 is pos- 
itive semi-definite, as it should be by Proposition 13. The closure ~.~id of the quotient of 
L ® "~id by the null space 7-/0 of (., ")0 is naturally realized as L2(Rm-I) :  if we define 
U : L ® 7-Lid --+ L2(R m-l)  by (U~F)(x 2 . . . . .  x m) = f d x ~ ( x , x , x  z . . . . .  x" )  then U 
exactly annihilates 7-(0, and quotients to a unitary map g / f rom -]./id to t 2 ( ~ m - l ) .  The 

corresponding representation O#dO -1 of the algebra of observables .,4 is simply the 
identity representation of/C~(L2(R "-1 ) ) on LE(R "-1 ). 
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This result may be much ado about nothing, but we wish to point out that this 
extremely simple constrained system cannot be quantized by the BRST method without 
serious ad hoc modifications [25]. 
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